ARM Architecture
Reference Manual

ARM

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.
ARM DDI 0100l

ARM Architecture Reference Manual

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.
Release Information

The following changes have been made to this document.

Change History

Date Issue Change

February 1996 A First edition

July 1997 B Updated and index added

April 1998 C Updated

February 2000 D Updated for ARM architecture v5

June 2000 E Updated for ARM architecture vSTE and corrections to Part B
July 2004 F Updated for ARM architecture v6 (Confidential)

December 2004 G Updated to incorporate corrections to errata

March 2005 H Updated to incorporate corrections to errata

July 2005 I Updated to incorporate corrections to pseudocode and graphics

Proprietary Notice
ARM, the ARM Powered logo, Thumb, and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE, PrimeCell, ARM7TDMI,
ARMT7TDMI-S, ARM9TDMI, ARMOIE-S, ETM7, ETM9, TDMI, STRONG, are trademarks of ARM Limited.

All other products or services mentioned herein may be trademarks of their respective owners.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith.

1. Subject to the provisions set out below, ARM hereby grants to you a perpetual, non-exclusive, nontransferable, royalty
free, worldwide licence to use this ARM Architecture Reference Manual for the purposes of developing; (i) software
applications or operating systems which are targeted to run on microprocessor cores distributed under licence from ARM;
(ii) tools which are designed to develop software programs which are targeted to run on microprocessor cores distributed
under licence from ARM,; (iii) or having developed integrated circuits which incorporate a microprocessor core
manufactured under licence from ARM.

2. Except as expressly licensed in Clause 1 you acquire no right, title or interest in the ARM Architecture Reference

Manual, or any Intellectual Property therein. In no event shall the licences granted in Clause 1, be construed as granting
you expressly or by implication, estoppel or otherwise, licences to any ARM technology other than the ARM Architecture
Reference Manual. The licence grant in Clause 1 expressly excludes any rights for you to use or take into use any ARM
patents. No right is granted to you under the provisions of Clause 1 to; (i) use the ARM Architecture Reference Manual
for the purposes of developing or having developed microprocessor cores or models thereof which are compatible in

whole or part with either or both the instructions or programmer's models described in this ARM Architecture Reference

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Manual; or (ii) develop or have developed models of any microprocessor cores designed by or for ARM; or (iii) distribute
in whole or in part this ARM Architecture Reference Manual to third parties, other than to your subcontractors for the
purposes of having developed products in accordance with the licence grant in Clause 1 without the express written
permission of ARM; or (iv) translate or have translated this ARM Architecture Reference Manual into any other
languages.

3. THE ARM ARCHITECTURE REFERENCE MANUAL IS PROVIDED "AS IS" WITH NO WARRANTIES
EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF
SATISFACTORY QUALITY, NONINFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE.

4. No licence, express, implied or otherwise, is granted to LICENSEE, under the provisions of Clause 1, to use the ARM
tradename, in connection with the use of the ARM Architecture Reference Manual or any products based thereon.
Nothing in Clause 1 shall be construed as authority for you to make any representations on behalf of ARM in respect of
the ARM Architecture Reference Manual or any products based thereon.

Copyright © 1996-1998, 2000, 2004, 2005 ARM limited
110 Fulbourn Road Cambridge, England CB1 9NJ

Restricted Rights Legend: Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19

This document is Non-Confidential. The right to use, copy and disclose this document is subject to the licence set out
above.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. iii

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

Contents

ARM Architecture Reference Manual

Preface
AbOoUt thiS MAaNUAIccooiiiieecee s Xii
Architecture versions and variantsccccccvvviiiiiie e, Xiii
Using this Manualocceeiiiiiii e Xviii
(076 01VZ=T 01 110] o =TSR XXi
Further readingcoooveeeiieee e xXiii
1o | 7= Vo] R XXiv

Part A CPU Architecture
Chapter A1 Introduction to the ARM Architecture

Al.1 About the ARM architeCtureouevevieeeiiiiiiiiieieeeeeee e A1-2

A1.2 ARM INSrUCHON ST ... A1-6

A1.3 Thumb iINSTrUCON SBtceieeieeeeeeeeeece e A1-11

Chapter A2 Programmers’ Model

A2.1
A2.2
A2.3
A2.4
A2.5

DAt tYPES .oeeeiieie e e A2-2
ProCesSOr MOUEScooiiiiiiiiiiiiee et A2-3
REGISTIErS .. A2-4
General-purpose registerscccoveieeiiieeiie e A2-6
Program status registers ... A2-11

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. v

Contents

A2.6
A2.7
A2.8
A2.9
A2.10
A2.11

EXCEPHIONS ..o A2-16
ENdian SUPPOIoiiiiieeiiieeee e A2-30
Unaligned access SUPPOItccuueereiiiriiieee e e e A2-38
Synchronization primitivesccoceiiieeeiiie e A2-44
The Jazelle EXIENSIONoooiiiiiieiiieee e A2-53
Saturated integer arithmeticcocviiiiiiii A2-69

Chapter A3 The ARM Instruction Set

A3.1
A3.2
A3.3
A3.4
A3.5
A3.6
A3.7
A3.8
A3.9
A3.10
A3.11
A3.12
A3.13
A3.14
A3.15
A3.16

Instruction set eNCoOdiNgcccviiiiiiiii A3-2
The condition fieldccceeiiiieei e A3-3
Branch inStruCtionScooiiiiiiiiii e A3-5
Data-processing iNStruCtionscoooviiieeiiiiieee e A3-7
MUltiply iNSTTUCHIONSeeeiiiiee e A3-10
Parallel addition and subtraction instructionsccccccccevevenneenn. A3-14
Extend iNSTrUCLIONS ... A3-16
Miscellaneous arithmetic instructionscccccoiiiiiiiniinnne A3-17
Other miscellaneous INStrUCtioNScccovceeeeiiie i, A3-18
Status register access instructionscccccccovvivniii e A3-19
Load and store iNStruCtioNSccveviveeeeiieeiiiee e A3-21
Load and Store Multiple instructionsccocoviieeiiiec i, A3-26
Semaphore iNStruCtioNSoccieiiieiie e A3-28
Exception-generating iNStructionscccevveeiviieeinien e A3-29
Coprocessor iNSTIUCHIONSc.eeeueririeriiieieeree et A3-30
Extending the inStruction Setccoieiiiiiiii e A3-32

Chapter A4 ARM Instructions

A4
A4.2

Alphabetical list of ARM inStructionscccccceevvcieiieeeicciiee e, A4-2
ARM instructions and architecture versionsc.c.ccccccceeveiennnns A4-286

Chapter A5 ARM Addressing Modes

A51
A52
A5.3
A5.4
A5.5

Addressing Mode 1 - Data-processing operandsc.ccccevcveeennnee. A5-2
Addressing Mode 2 - Load and Store Word or Unsigned Byte A5-18
Addressing Mode 3 - Miscellaneous Loads and Stores A5-33
Addressing Mode 4 - Load and Store Multiplecccccovcveieennenn. A5-41
Addressing Mode 5 - Load and Store COprocessorccc...... A5-49

Chapter A6 The Thumb Instruction Set

A6.1
A6.2
A6.3
A6.4
AB.5
AB.6
A6.7
A6.8

About the Thumb instruction setccooiiiiiiiii e, AB-2
Instruction set enNCOAINGcooiiiiriiiiiiiiei e AB-4
Branch inStruCtionSceii i AB-6
Data-processing inStructionscccoceiiieiiiiiin i A6-8
Load and Store Register instructionsccoooverienieininneenieee AB-15
Load and Store Multiple inStructionscccccovevienieniiiiiinieeeee AB-18
Exception-generating instructionsccccoocceiiiiiine A6-20
Undefined Instruction Spaceccccoccveeeiiiiiiee e A6-21

vi Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Contents

Chapter A7 Thumb Instructions

A71 Alphabetical list of Thumb instructionsc.ccccoiiiiiiiis A7-2
A7.2 Thumb instructions and architecture versionsccccoecevenen. A7-125
Part B Memory and System Architectures
Chapter B1 Introduction to Memory and System Architectures
B1.1 About the memory SYStemMccceeiiiiiii e B1-2
B1.2 Memory hierarchy ..o B1-4
B1.3 L1 CACNE .o B1-6
B1.4 L2 CACNE ..o B1-7
B1.5 WIrite BUFfErs ...oooviiieiie e B1-8
B1.6 Tightly Coupled MEmMOTYcocviiiiieeiiie e s B1-9
B1.7 ASYNChronous eXCePLiONSccvceiiiiieiiiii e B1-10
B1.8 SEMAPNOTES ...t B1-12

Chapter B2 Memory Order Model

B2.1 About the memory order modelccooceeeeiieiiii e B2-2
B2.2 Read and write definitionscccviiiiiii e B2-4
B2.3 Memory attributes prior to ARMVEoooiiiiiiiiiiii e, B2-7
B2.4 ARMv6 memory attributes - introductioncccccveiiniiiininnen. B2-8
B2.5 Ordering requirements for memory acCessescccccvneeeenineennne B2-16
B2.6 MEMONKY DAITIEIS ..o B2-18
B2.7 Memory coherency and acCess ISSUEScceveveeerieeerireeesieerennnee B2-20

Chapter B3 The System Control Coprocessor

B3.1 About the System Control COProCESSOrcoevverriireeeieeieeeieeneenes B3-2
B3.2 REGISIEIS .o B3-3
B3.3 Register 0: ID COAEScooiiiiiiiiiiiieeie e e B3-7
B3.4 Register 1: Control registerscccoieviviiiiniee e B3-12
B3.5 Registers 210 15 ... B3-18

Chapter B4 Virtual Memory System Architecture

B4.1 ADBOUE the VIMSA ... e e B4-2
B4.2 MemOry aCCESS SEUENCEevirveeeiiiieeiieeiieeeeatee e sree e snree e B4-4
B4.3 Memory access CONTIOloovceiiiiiereeee e B4-8
B4.4 Memory region attributes ... B4-11
B4.5 ADOIS ..ot e B4-14
B4.6 Fault Address and Fault Status registersccccveviviiniiiininnen. B4-19
B4.7 Hardware page table translationcccccooiiieiiiiiineee B4-23
B4.8 Fine page tables and support of tiny pagesccccccevieviiienennnen. B4-35
B4.9 CPA5 reQISIEIS it e B4-39

Chapter B5 Protected Memory System Architecture
B5.1 ADOULthE PMSAoiiiiiiiieiceceee e B5-2

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. vii

Contents

Chapter B6

Chapter B7

Chapter B8

Part C
Chapter C1

Chapter C2

B5.2 Memory acCess SEQUENCEcceeerveeeiiiieeiiie e
B5.3 Memory access CONTIOlcooocviiiiiiiiiiie e
B5.4 Memory access attributes ..o
B5.5 Memory aborts (PMSAVE)c.oiivieieiiieeeiee e
B5.6 Fault Status and Fault Address register Supportccccoccveeerneenne
B5.7 CPA5 rEQISIEIS ittt

Caches and Write Buffers

B6.1 About caches and write buffers ...
B6.2 Cache organizationccceeeoieiieiiee e
B6.3 TYPES Of CACNEeoiiiiiieiie e
B6.4 L1 CACNE i
B6.5 Considerations for additional levels of cachecccccccvvrveneeens
B6.6 CPA5 regiSters ..o

Tightly Coupled Memory

B7.1 ADOUE TCOM L
B7.2 TCM configuration and CONtrolcccoeieeiieniieiieneee e
B7.3 Accesses 10 TCM and Cachecceeeeriieiiienieiiceseese e
B7.4 Level 1 (L1) DMA MOdEloooiiiieiiiieeiee e
B7.5 L1 DMA control using CP15 Register 11cccoviiiiiieeiieceeeee

Fast Context Switch Extension

B8.1 ADOULthe FCSEooiiiii e
B8.2 Modified virtual addreSSEesccvviviiiiiiieeieeee e
B8.3 Enablingthe FCSE ...
B8.4 Debug and TracCeccceiceieiiiiiee e
B8.5 CPA5 rEQISIEIS .uiieiiiitieee sttt

Vector Floating-point Architecture

Introduction to the Vector Floating-point Architecture

C1.1 About the Vector Floating-point architectureccccccooiiiinee
C1.2 Overview of the VFP architectureccoceeviiiiinni e,
C1.3 Compliance with the IEEE 754 standardccccccevieniviiencnnene.
Cl1.4 IEEE 754 implementation choicesccccoviiiiiiiiiiii e

VFP Programmer’s Model

c2.1 Floating-point formatscccceviiiiiiinscee e
c2.2 ROUNAING .ot
c2.3 Floating-point @XCePtioNScueeeiriiirieee e
c24 FIUSh-t0-ZEr0 MOEcoviiiiiiiie e
C2.5 Default NaN modeooooiiiiiieeieee e
C2.6 Floating-point general-purpose registerscccooccevvieernieeenineens
C2.7 System registerscociiveiiiiiieee e

viii

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

Chapter C3

Chapter C4

Chapter C5

Part D

Chapter D1

Chapter D2

Chapter D3

Contents

Cc2.8 Reset behavior and initializationccccoeeieiiiiiiiiiiiiiiiiieeeeeeeeeees C2-29

VFP Instruction Set Overview

C3.1 Data-processing iNStruCtionscoooceeerieeeiiiee e C3-2
C3.2 Load and Store inStruCtionsccccveieeiieniiiesiee e C3-14
C3.3 Single register transfer iNStructionsccoueeeriiinniieniiiee e C3-18
C3.4 Two-register transfer inStructionsccccccoiiiiiiiiiiiiece, C3-22

VFP Instructions
C4A1 Alphabetical list of VFP instructionsccccovviiieiiiniieee e, C4-2

VFP Addressing Modes

C5.1 Addressing Mode 1 - Single-precision vectors (non-monadic) C5-2
C5.2 Addressing Mode 2 - Double-precision vectors (non-monadic) C5-8
C5.3 Addressing Mode 3 - Single-precision vectors (monadic) C5-14
C5.4 Addressing Mode 4 - Double-precision vectors (monadic) C5-18
C5.5 Addressing Mode 5 - VFP load/store multipleccccooeevcvercneenen. C5-22

Debug Architecture

Introduction to the Debug Architecture

D11 [[g) oo [UTe] (o] o [N D1-2
D1.2 TTACE .ottt e e e e e e e e e e e e e e e e e re e aaaas D1-4
D1.3 Debug and ARMVBcoociiiiiiiiicce e D1-5

Debug Events and Exceptions

D2.1 INTrOAUCTION ..o e D2-2
D2.2 Monitor debUG-MOTEcoocueiiiiiiiie e D2-5
D2.3 Halting debug-mode ... D2-8
D2.4 External Debug Interface ... D2-13

Coprocessor 14, the Debug Coprocessor

D3.1 Coprocessor 14 debug registerscccoociiciiiiiiniciie e D3-2

D3.2 Coprocessor 14 debug inStruCtionsccceceeiieireene e D3-5

D3.3 Debug register referencCecccooceeiiieeiee e D3-8

D3.4 Reset values of the CP14 debug registersccccevveniiriennieenn D3-24

D3.5 Access to CP14 debug registers from the external debug interface
D3-25

Glossary

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ix

Contents

X Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Preface

This preface describes the versions of the ARM® architecture and the contents of this manual, then lists the
conventions and terminology it uses.

. About this manual on page xii

. Architecture versions and variants on page xiii
. Using this manual on page xviii

. Conventions on page xxi

. Further reading on page xxiii

. Feedback on page xxiv.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. Xi

Preface

About this manual

The purpose of this manual is to describe the ARM instruction set architecture, including its high code
density Thumb® subset, and three of its standard coprocessor extensions:

. The standard System Control coprocessor (coprocessor 15), which is used to control memory system
components such as caches, write buffers, Memory Management Units, and Protection Units.

. The Vector Floating-point (VFP) architecture, which uses coprocessors 10 and 11 to supply a
high-performance floating-point instruction set.

. The debug architecture interface (coprocessor 14), formally added to the architecture in ARM v6 to
provide software access to debug features in ARM cores, (for example, breakpoint and watchpoint
control).

The 32-bit ARM and 16-bit Thumb instruction sets are described separately in Part A. The precise effects
of each instruction are described, including any restrictions on its use. This information is of primary
importance to authors of compilers, assemblers, and other programs that generate ARM machine code.

Assembler syntax is given for most of the instructions described in this manual, allowing instructions to be
specified in textual form.

However, this manual is not intended as tutorial material for ARM assembler language, nor does it describe
ARM assembler language at anything other than a very basic level. To make effective use of ARM assembler
language, consult the documentation supplied with the assembler being used.

The memory and system architecture definition is significantly improved in ARM architecture version 6 (the
latest version). Prior to this, it usually needs to be supplemented by detailed implementation-specific
information from the technical reference manual of the device being used.

Xii Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Preface

Architecture versions and variants

The ARM instruction set architecture has evolved significantly since it was first developed, and will
continue to be developed in the future. Six major versions of the instruction set have been defined to date,
denoted by the version numbers 1 to 6. Of these, the first three versions including the original 26-bit
architecture (the 32-bit architecture was introduced at ARMv3) are now OBSOLETE. All bits and encodings
that were used for 26-bit features become RESERVED for future expansion by ARM Ltd.

Versions can be qualified with variant letters to specify collections of additional instructions that are
included as an architecture extension. Extensions are typically included in the base architecture of the next
version number, ARMVS5T being the notable exception. Provision is also made to exclude variants by
prefixing the variant letter with x, for example the xP variant described below in the summary of version 5
features.

Note

The xM variant which indicates that long multiplies (32 x 32 multiplies with 64-bit results) are not
supported, has been withdrawn.

The valid architecture variants are as follows (variant in brackets for legacy reasons only):
ARMv4, ARMv4T, ARMvS5T, (ARMvS5TExP), ARMVS5TE, ARMvV5TE]J, and ARMv6
The following architecture variants are now OBSOLETE:

ARMv1, ARMv2, ARMv2a, ARMv3, ARMv3G, ARMv3M, ARMv4xM, ARMv4TxM, ARMvVS5,
ARMv5xM, and ARMv5TxM

Details on OBSOLETE versions are available on request from ARM.

The ARM and Thumb instruction sets are summarized by architecture variant in ARM instructions and
architecture versions on page A4-286 and Thumb instructions and architecture versions on page A7-125
respectively. The key differences introduced since ARMv4 are listed below.

Version 4 and the introduction of Thumb (T variant)

The Thumb instruction set is a re-encoded subset of the ARM instruction set. Thumb instructions execute
in their own processor state, with the architecture defining the mechanisms required to transition between
ARM and Thumb states. The key difference is that Thumb instructions are half the size of ARM instructions
(16 bits compared with 32 bits). Greater code density can usually be achieved by using the Thumb
instruction set in preference to the ARM instruction set. However, the Thumb instruction set does have some
limitations:

. Thumb code usually uses more instructions for a given task, making ARM code best for maximizing
performance of time-critical code.

. ARM state and some associated ARM instructions are required for exception handling.

The Thumb instruction set is always used in conjunction with a version of the ARM instruction set.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. Xiii

Preface

New features in Version 5T
This version extended architecture version 4T as follows:
. Improved efficiency of ARM/Thumb interworking

. Count leading zeros (CLZ, ARM only) and software breakpoint (BKPT, ARM and Thumb) instructions
added

. Additional options for coprocessor designers (coprocessor support is ARM only)

. Tighter definition of flag setting on multiplies (ARM and Thumb)

. Introduction of the E variant, adding ARM instructions which enhance performance of an ARM
processor on typical digital signal processing (DSP) algorithms:

— Several multiply and multiply-accumulate instructions that act on 16-bit data items.

— Addition and subtraction instructions that perform saturated signed arithmetic. Saturated
arithmetic produces the maximum positive or negative value instead of wrapping the result if
the calculation overflows the normal integer range.

— Load (LDRD), store (STRD) and coprocessor register transfer (MCRR and MRRC) instructions that act
on two words of data.

— A preload data instruction PLD.

. Introduction of the J variant, adding the BXJ instruction and the other provisions required to support
the Jazelle® architecture extension.

Note

Some early implementations of the E variant omitted the LDRD, STRD, MCRR, MRCC and PLD instructions. These
are designated as conforming to the ExP variant, and the variant is defined for legacy reasons only.

Xiv Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Preface

New features in Version 6

The following ARM instructions are added:

CPS, SRS and RFE instructions for improved exception handling

REV, REV16 and REVSH byte reversal instructions

SETEND for a revised endian (memory) model

LDREX and STREX exclusive access instructions

SXTB, SXTH, UXTB, UXTH byte/halfword extend instructions

A set of Single Instruction Multiple Data (SIMD) media instructions

Additional forms of multiply instructions with accumulation into a 64-bit result.

The following Thumb instructions are added:

CPS, CPY (a form of MOV), REV, REV16, REVSH, SETEND, SXTB, SXTH, UXTB, UXTH

Other changes to ARMv6 are as follows:

The architecture name ARMv6 implies the presence of all preceding features, that is, ARMvSTEJ
compliance.

Revised Virtual and Protected Memory System Architectures.

Provision of a Tightly Coupled Memory model.

New hardware support for word and halfword unaligned accesses.

Formalized adoption of a debug architecture with external and Coprocessor 14 based interfaces.

Prior to ARMv6, the System Control coprocessor (CP15) described in Chapter B3 was a
recommendation only. Support for this coprocessor is now mandated in ARMv6.

For historical reasons, the rules relating to unaligned values written to the PC are somewhat complex
prior to ARMv6. These rules are made simpler and more consistent in ARMv6.

The high vectors extension prior to ARMv6 is an optional (IMPLEMENTATION DEFINED) part of the
architecture. This extension becomes obligatory in ARMvo6.

Prior to ARMV6, a processor may use either of two abort models. ARMv6 requires that the Base
Restored Abort Model (BRAM) is used. The two abort models supported previously were:

— The BRAM, in which the base register of any valid load/store instruction that causes a memory
system abort is always restored to its pre-instruction value.

— The Base Updated Abort Model (BUAM), in which the base register of any valid load/store
instruction that causes a memory system abort will have been modified by the base register
writeback (if any) of that instruction.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. XV

Preface

The restriction that multiplication destination registers should be different from their source registers
is removed in ARMV6.

In ARMVS, the LDM(2) and STM(2) ARM instructions have restrictions on the use of banked registers
by the immediately following instruction. These restrictions are removed from ARMv6.

The rules determining which PSR bits are updated by an MSR instruction are clarified and extended to
cover the new PSR bits defined in ARMv6.

In ARMvS5, the Thumb MOV instruction behavior varies according to the registers used (see note). Two
changes are made in ARMvb6.

— The restriction about the use of low register numbers in the MOV (3) instruction encoding is
removed.

— In order to make the new side-effect-free MOV instructions available to the assembler language
programmer without changing the meaning of existing assembler sources, a new assembler
syntax CPY Rd,Rn is introduced. This always assembles to the MOV (3) instruction regardless of
whether Rd and Rn are high or low registers.

Note

In ARMVS, the Thumb MOV Rd,Rn instructions have the following properties:

If both Rd and Rn are low registers, the instruction is the MOV (2) instruction. This instruction sets the
N and Z flags according to the value transferred, and sets the C and V flags to 0.

If either Rd or Rn is a high register, the instruction is the MOV (3) instruction. This instruction leaves
the condition flags unchanged.

This situation results in behavior that varies according to the registers used. The MOV(2) side-effects also limit
compiler flexibility on use of pseudo-registers in a global register allocator.

Naming of ARM/Thumb architecture versions

To name a precise version and variant of the ARM/Thumb architecture, the following strings are
concatenated:

1.

2.
3.
4

The string ARMv.
The version number of the ARM instruction set.
Variant letters of the included variants.

In addition, the letter P is used after x to denote the exclusion of several instructions in the
ARMVSTEXP variant.

The table Architecture versions on page xvii lists the standard names of the current (not obsolete)
ARM/Thumb architecture versions described in this manual. These names provide a shorthand way of
describing the precise instruction set implemented by an ARM processor. However, this manual normally
uses descriptive phrases such as T variants of architecture version 4 and above to avoid the use of lists of
architecture names.

Xvi

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Preface

All architecture names prior to ARMv4 are now OBSOLETE. The term all is used throughout this manual to
refer to all architecture versions from ARMv4 onwards.

Architecture versions

ARM instruction set

Thumb instruction set

Name . . Notes
version version

ARMv4 4 None -

ARMVAT 4 1 _

ARMvVST 5 2 -

ARMVSTExP 5 2 Enhanced DSP
instructions except
LDRD, MCRR, MRRC, PLD,
and STRD

ARMVSTE 5 2 Enhanced DSP
instructions

ARMVSTE] 5 2 Addition of BX]
instruction and Jazelle
Extension support
over ARMvSTE

ARMvV6 6 3 Additional
instructions as listed in
Table A4-2 on
page A4-286 and
Table A7-1 on
page A7-125.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. XVii

Preface

Using this manual

The information in this manual is organized into four parts, as described below.

Part A - CPU Architectures

Part A describes the ARM and Thumb instruction sets, and contains the following chapters:

Chapter A1l

Chapter A2

Chapter A3

Chapter A4

Chapter AS

Chapter A6

Chapter A7

Gives a brief overview of the ARM architecture, and the ARM and Thumb instruction sets.

Describes the types of value that ARM instructions operate on, the general-purpose registers
that contain those values, and the Program Status Registers. This chapter also describes how
ARM processors handle interrupts and other exceptions, endian and unaligned support,
information on + synchronization primitives, and the Jazelle® extension.

Gives a description of the ARM instruction set, organized by type of instruction.

Contains detailed reference material on each ARM instruction, arranged alphabetically by
instruction mnemonic.

Contains detailed reference material on the addressing modes used by ARM instructions.
The term addressing mode is interpreted broadly in this manual, to mean a procedure shared
by many different instructions, for generating values used by the instructions. For four of the
addressing modes described in this chapter, the values generated are memory addresses
(which is the traditional role of an addressing mode). The remaining addressing mode
generates values to be used as operands by data-processing instructions.

Gives a description of the Thumb instruction set, organized by type of instruction. This
chapter also contains information about how to switch between the ARM and Thumb
instruction sets, and how exceptions that arise during Thumb state execution are handled.

Contains detailed reference material on each Thumb instruction, arranged alphabetically by
instruction mnemonic.

xviii

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Preface

Part B - Memory and System Architectures

Part B describes standard memory system features that are normally implemented by the System Control
coprocessor (coprocessor 15) in an ARM-based system. It contains the following chapters:

Chapter B1
Chapter B2
Chapter B3

Chapter B4

Chapter B5

Chapter B6

Chapter B7

Chapter B8

Gives a brief overview of this part of the manual.
The memory order model.
Gives a general description of the System Control coprocessor and its use.

Describes the standard ARM memory and system architecture based on the use of a Virtual
Memory System Architecture (VMSA) based on a Memory Management Unit (MMU).

Gives a description of the simpler Protected Memory System Architecture (PMSA) based on
a Memory Protection Unit (MPU).

Gives a description of the standard ways to control caches and write buffers in ARM
memory systems. This chapter is relevant both to systems based on an MMU and to systems
based on an MPU.

Describes the Tightly Coupled Memory (TCM) architecture option for level 1 memory.

Describes the Fast Context Switch Extension and Context ID support (ARMV6 only).

Part C - Vector Floating-point Architecture

Part C describes the Vector Floating-point (VFP) architecture. This is a coprocessor extension to the ARM
architecture designed for high floating-point performance on typical graphics and DSP algorithms.

Chapter C1

Chapter C2

Chapter C3

Chapter C4

Chapter C5

Gives a brief overview of the VFP architecture and information about its compliance with
the IEEE 754-1985 floating-point arithmetic standard.

Describes the floating-point formats supported by the VFP instruction set, the floating-point
general-purpose registers that hold those values, and the VFP system registers.

Describes the VFP coprocessor instruction set, organized by type of instruction.

Contains detailed reference material on the VFP coprocessor instruction set, organized
alphabetically by instruction mnemonic.

Contains detailed reference material on the addressing modes used by VFP instructions.
One of these is a traditional addressing mode, generating addresses for load/store
instructions. The remainder specify how the floating-point general-purpose registers and
instructions can be used to hold and perform calculations on vectors of floating-point values.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. XiX

Preface

Part D - Debug Architecture

Part D describes the debug architecture. This is a coprocessor extension to the ARM architecture designed

to provide configuration, breakpoint and watchpoint support, and a Debug Communications Channel (DCC)
to a debug host.

Chapter D1 Gives a brief introduction to the debug architecture.
Chapter D2 Describes the key features of the debug architecture.

Chapter D3 Describes the Coprocessor Debug Register support (cp14) for the debug architecture.

XX

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Preface

Conventions

This manual employs typographic and other conventions intended to improve its ease of use.

General typographic conventions

typewriter Is used for assembler syntax descriptions, pseudo-code descriptions of instructions,

and source code examples. In the cases of assembler syntax descriptions and
pseudo-code descriptions, see the additional conventions below.

The typewriter font is also used in the main text for instruction mnemonics and for
references to other items appearing in assembler syntax descriptions, pseudo-code
descriptions of instructions and source code examples.

italic Highlights important notes, introduces special terminology, and denotes internal
cross-references and citations.

bold Is used for emphasis in descriptive lists and elsewhere, where appropriate.

SMALL CAPITALS Are used for a few terms which have specific technical meanings. Their meanings

can be found in the Glossary.

Pseudo-code descriptions of instructions

A form of pseudo-code is used to provide precise descriptions of what instructions do. This pseudo-code is
written in a typewriter font, and uses the following conventions for clarity and brevity:

Indentation is used to indicate structure. For example, the range of statements that a for statement
loops over, goes from the for statement to the next statement at the same or lower indentation level
as the for statement (both ends exclusive).

Comments are bracketed by /x and =/, as in the C language.

English text is occasionally used outside comments to describe functionality that is hard to describe
otherwise.

All keywords and special functions used in the pseudo-code are described in the Glossary.

Assignment and equality tests are distinguished by using = for an assignment and == for an equality
test, as in the C language.

Instruction fields are referred to by the names shown in the encoding diagram for the instruction.
When an instruction field denotes a register, a reference to it means the value in that register, rather
than the register number, unless the context demands otherwise. For example, a Rn == 0 test is
checking whether the value in the specified register is 0, but aRd is R15 test is checking whether the
specified register is register 15.

When an instruction uses an addressing mode, the pseudo-code for that addressing mode generates
one or more values that are used in the pseudo-code for the instruction. For example, the AND
instruction described in AND on page A4-8 uses ARM addressing mode 1 (see Addressing Mode 1 -
Data-processing operands on page A5-2). The pseudo-code for the addressing mode generates two
values shifter_operand and shifter_carry_out, which are used by the pseudo-code for the AND
instruction.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. XXi

Preface

Assembler syntax descriptions

This manual contains numerous syntax descriptions for assembler instructions and for components of
assembler instructions. These are shown in a typewriter font, and are as follows:

{1

spaces

+/-

%

Any item bracketed by < and > is a short description of a type of value to be supplied by the
user in that position. A longer description of the item is normally supplied by subsequent
text. Such items often correspond to a similarly named field in an encoding diagram for an
instruction. When the correspondence simply requires the binary encoding of an integer
value or register number to be substituted into the instruction encoding, it is not described
explicitly. For example, if the assembler syntax for an ARM instruction contains an item
<Rn> and the instruction encoding diagram contains a 4-bit field named Rn, the number of
the register specified in the assembler syntax is encoded in binary in the instruction field.

If the correspondence between the assembler syntax item and the instruction encoding is
more complex than simple binary encoding of an integer or register number, the item
description indicates how it is encoded.

Any item bracketed by { and } is optional. A description of the item and of how its presence
or absence is encoded in the instruction is normally supplied by subsequent text.

This indicates an alternative character string. For example, LDM|STM is either LDM or STM.

Single spaces are used for clarity, to separate items. When a space is obligatory in the
assembler syntax, two or more consecutive spaces are used.

This indicates an optional + or - sign. If neither is coded, + is assumed.

When used in a combination like <immed_8> = 4, this describes an immediate value which
must be a specified multiple of a value taken from a numeric range. In this instance, the
numeric range is 0 to 255 (the set of values that can be represented as an 8-bit immediate)
and the specified multiple is 4, so the value described must be a multiple of 4 in the range
4*(0 = 0 to 4*255 = 1020.

All other characters must be encoded precisely as they appear in the assembler syntax. Apart from { and },
the special characters described above do not appear in the basic forms of assembler instructions
documented in this manual. The { and } characters need to be encoded in a few places as part of a variable
item. When this happens, the long description of the variable item indicates how they must be used.

This manual only attempts to describe the most basic forms of assembler instruction syntax. In practice,
assemblers normally recognize a much wider range of instruction syntaxes, as well as various directives to
control the assembly process and additional features such as symbolic manipulation and macro expansion.
All of these are beyond the scope of this manual.

xXii

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Preface

Further reading

This section lists publications from both ARM Limited and third parties that provide additional information
on the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See http://www.arm.com for
current errata sheets and addenda, and the ARM Frequently Asked Questions.
ARM publications

ARM External Debug Interface Specification.

External publications
The following books are referred to in this manual, or provide additional information:

. IEEE Standard for Shared-Data Formats Optimized for Scalable Coherent Interface (SCI)
Processors, IEEE Std 1596.5-1993, ISBN 1-55937-354-7, IEEE).

. The Java™ Virtual Machine Specification Second Edition, Tim Lindholm and Frank Yellin,
published by Addison Wesley (ISBN: 0-201-43294-3)

. JTAG Specification IEEE1149.1

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. XXiii

Preface

Feedback

ARM Limited welcomes feedback on its documentation.

Feedback on this book

If you notice any errors or omissions in this book, send email to errata@arm giving:

. the document title

. the document number

. the page number(s) to which your comments apply
. a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.

XXiv Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Part A

CPU Architecture

Chapter A1
Introduction to the ARM Architecture

This chapter introduces the ARM® architecture and contains the following sections:
. About the ARM architecture on page A1-2

. ARM instruction set on page Al1-6

. Thumb instruction set on page Al-11.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

Introduction to the ARM Architecture

A1.1 About the ARM architecture

The ARM architecture has evolved to a point where it supports implementations across a wide spectrum of

performance points. Over two billion parts have shipped, establishing it as the dominant architecture across

many market segments. The architectural simplicity of ARM processors has traditionally led to very small

implementations, and small implementations allow devices with very low power consumption.

Implementation size, performance, and very low power consumption remain key attributes in the

development of the ARM architecture.

The ARM is a Reduced Instruction Set Computer (RISC), as it incorporates these typical RISC architecture

features:

. a large uniform register file

. a load/store architecture, where data-processing operations only operate on register contents, not
directly on memory contents

. simple addressing modes, with all load/store addresses being determined from register contents and
instruction fields only

. uniform and fixed-length instruction fields, to simplify instruction decode.

In addition, the ARM architecture provides:

. control over both the Arithmetic Logic Unit (ALU) and shifter in most data-processing instructions
to maximize the use of an ALU and a shifter

. auto-increment and auto-decrement addressing modes to optimize program loops

. Load and Store Multiple instructions to maximize data throughput

. conditional execution of almost all instructions to maximize execution throughput.

These enhancements to a basic RISC architecture allow ARM processors to achieve a good balance of high

performance, small code size, low power consumption, and small silicon area.

A1-2 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Introduction to the ARM Architecture

A1.1.1 ARM registers

ARM has 31 general-purpose 32-bit registers. At any one time, 16 of these registers are visible. The other
registers are used to speed up exception processing. All the register specifiers in ARM instructions can
address any of the 16 visible registers.

The main bank of 16 registers is used by all unprivileged code. These are the User mode registers. User
mode is different from all other modes as it is unprivileged, which means:

. User mode can only switch to another processor mode by generating an exception. The SWI
instruction provides this facility from program control.

. Memory systems and coprocessors might allow User mode less access to memory and coprocessor
functionality than a privileged mode.

Three of the 16 visible registers have special roles:

Stack pointer Software normally uses R13 as a Stack Pointer (SP). R13 is used by the PUSH and POP
instructions in T variants, and by the SRS and RFE instructions from ARMv6.

Link register Register 14 is the Link Register (LR). This register holds the address of the next
instruction after a Branch and Link (BL or BLX) instruction, which is the instruction
used to make a subroutine call. It is also used for return address information on entry
to exception modes. At all other times, R14 can be used as a general-purpose
register.

Program counter Register 15 is the Program Counter (PC). It can be used in most instructions as
a pointer to the instruction which is two instructions after the instruction being
executed. In ARM state, all ARM instructions are four bytes long (one 32-bit word)
and are always aligned on a word boundary. This means that the bottom two bits of
the PC are always zero, and therefore the PC contains only 30 non-constant bits.
Two other processor states are supported by some versions of the architecture.
Thumb® state is supported on T variants, and Jazelle® state on J variants. The PC can
be halfword (16-bit) and byte aligned respectively in these states.

The remaining 13 registers have no special hardware purpose. Their uses are defined purely by software.
For more details on registers, refer to Registers on page A2-4.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A1-3

Introduction to the ARM Architecture

A1.1.2

Exceptions

ARM supports seven types of exception, and a privileged processing mode for each type. The seven types
of exception are:

. reset

. attempted execution of an Undefined instruction

. software interrupt (SWI) instructions, can be used to make a call to an operating system
o Prefetch Abort, an instruction fetch memory abort

o Data Abort, a data access memory abort

o IRQ, normal interrupt

. FIQ, fast interrupt.

When an exception occurs, some of the standard registers are replaced with registers specific to the
exception mode. All exception modes have replacement banked registers for R13 and R14. The fast
interrupt mode has additional banked registers for fast interrupt processing.

When an exception handler is entered, R14 holds the return address for exception processing. This is used
to return after the exception is processed and to address the instruction that caused the exception.

Register 13 is banked across exception modes to provide each exception handler with a private stack pointer.
The fast interrupt mode also banks registers 8 to 12 so that interrupt processing can begin without the need
to save or restore these registers.

There is a sixth privileged processing mode, System mode, which uses the User mode registers. This is used
to run tasks that require privileged access to memory and/or coprocessors, without limitations on which
exceptions can occur during the task.

In addition to the above, reset shares the same privileged mode as SW1s.

For more details on exceptions, refer to Exceptions on page A2-16.

The exception process

When an exception occurs, the ARM processor halts execution in a defined manner and begins execution at
one of a number of fixed addresses in memory, known as the exception vectors. There is a separate vector
location for each exception, including reset. Behavior is defined for normal running systems (see section
A2.6) and debug events (see Chapter D3 Coprocessor 14, the Debug Coprocessor)

An operating system installs a handler on every exception at initialization. Privileged operating system tasks
are normally run in System mode to allow exceptions to occur within the operating system without state loss.

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Introduction to the ARM Architecture

A1.1.3 Status registers

All processor state other than the general-purpose register contents is held in status registers. The current

operating processor status is in the Current Program Status Register (CPSR). The CPSR holds:

. four condition code flags (Negative, Zero, Carry and oVerflow).

. one sticky (Q) flag (ARMv5 and above only). This encodes whether saturation has occurred in
saturated arithmetic instructions, or signed overflow in some specific multiply accumulate
instructions.

. four GE (Greater than or Equal) flags (ARMv6 and above only). These encode the following
conditions separately for each operation in parallel instructions:

— whether the results of signed operations were non-negative
— whether unsigned operations produced a carry or a borrow.

. two interrupt disable bits, one for each type of interrupt (two in ARMvS5 and below).

. one (A) bit imprecise abort mask (from ARMv6)

. five bits that encode the current processor mode.

. two bits that encode whether ARM instructions, Thumb instructions, or Jazelle opcodes are being
executed.

. one bit that controls the endianness of load and store operations (ARMv6 and above only).

Each exception mode also has a Saved Program Status Register (SPSR) which holds the CPSR of the task

immediately before the exception occurred. The CPSR and the SPSRs are accessed with special

instructions.

For more details on status registers, refer to Program status registers on page A2-11.

Table A1-1 Status register summary
Field Description Architecture
NZCV Condition code flags All
J Jazelle state flag 5TEJ and above
GEJ[3:0] SIMD condition flags 6
E Endian Load/Store 6
A Imprecise Abort Mask 6
I IRQ Interrupt Mask All
F FIQ Interrupt Mask All
T Thumb state flag 4T and above
Mode[4:0] Processor mode All
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A1-5

Introduction to the ARM Architecture

A1.2 ARM instruction set
The ARM instruction set can be divided into six broad classes of instruction:
. Branch instructions
. Data-processing instructions on page Al-7
. Status register transfer instructions on page A1-8
. Load and store instructions on page A1-8
. Coprocessor instructions on page Al1-10
. Exception-generating instructions on page Al-10.
Most data-processing instructions and one type of coprocessor instruction can update the four condition
code flags in the CPSR (Negative, Zero, Carry and oVerflow) according to their result.
Almost all ARM instructions contain a 4-bit condition field. One value of this field specifies that the
instruction is executed unconditionally.
Fourteen other values specify conditional execution of the instruction. If the condition code flags indicate
that the corresponding condition is true when the instruction starts executing, it executes normally.
Otherwise, the instruction does nothing. The 14 available conditions allow:
. tests for equality and non-equality
o tests for <, <=, >, and >= inequalities, in both signed and unsigned arithmetic
. each condition code flag to be tested individually.
The sixteenth value of the condition field encodes alternative instructions. These do not allow conditional
execution. Before ARMvS5 these instructions were UNPREDICTABLE.
A1.2.1 Branch instructions
As well as allowing many data-processing or load instructions to change control flow by writing the PC, a
standard Branch instruction is provided with a 24-bit signed word offset, allowing forward and backward
branches of up to 32MB.
There is a Branch and Link (BL) option that also preserves the address of the instruction after the branch in
R14, the LR. This provides a subroutine call which can be returned from by copying the LR into the PC.
There are also branch instructions which can switch instruction set, so that execution continues at the branch
target using the Thumb instruction set or Jazelle opcodes. Thumb support allows ARM code to call Thumb
subroutines, and ARM subroutines to return to a Thumb caller. Similar instructions in the Thumb instruction
set allow the corresponding Thumb — ARM switches. An overview of the Thumb instruction set is
provided in Chapter A6 The Thumb Instruction Set.
The BXJ instruction introduced with the J variant of ARMvS, and present in ARMv6, provides the
architected mechanism for entry to Jazelle state, and the associated assertion of the J flag in the CPSR.
A1-6 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A1.2.2

Introduction to the ARM Architecture

Data-processing instructions

The data-processing instructions perform calculations on the general-purpose registers. There are five types
of data-processing instructions:

. Arithmetic/logic instructions
. Comparison instructions
. Single Instruction Multiple Data (SIMD) instructions

. Multiply instructions on page A1-8

. Miscellaneous Data Processing instructions on page Al-8.

Arithmetic/logic instructions

The following arithmetic/logic instructions share a common instruction format. These perform an arithmetic
or logical operation on up to two source operands, and write the result to a destination register. They can
also optionally update the condition code flags, based on the result.

Of the two source operands:
. one is always a register
. the other has two basic forms:
— an immediate value
— aregister value, optionally shifted.

If the operand is a shifted register, the shift amount can be either an immediate value or the value of another
register. Five types of shift can be specified. Every arithmetic/logic instruction can therefore perform an
arithmetic/logic operation and a shift operation. As a result, ARM does not have dedicated shift instructions.

The Program Counter (PC) is a general-purpose register, and therefore arithmetic/logic instructions can
write their results directly to the PC. This allows easy implementation of a variety of jump instructions.

Comparison instructions

The comparison instructions use the same instruction format as the arithmetic/logic instructions. These
perform an arithmetic or logical operation on two source operands, but do not write the result to a register.
They always update the condition flags, based on the result.

The source operands of comparison instructions take the same forms as those of arithmetic/logic
instructions, including the ability to incorporate a shift operation.

Single Instruction Multiple Data (SIMD) instructions

The add and subtract instructions treat each operand as two parallel 16-bit numbers, or four parallel 8-bit
numbers. They can be treated as signed or unsigned. The operations can optionally be saturating, wrap
around, or the results can be halved to avoid overflow.

These instructions are available in ARMv6.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A1-7

Introduction to the ARM Architecture

Multiply instructions
There are several classes of multiply instructions, introduced at different times into the architecture. See
Multiply instructions on page A3-10 for details.
Miscellaneous Data Processing instructions
These include Count Leading Zeros (CLZ) and Unsigned Sum of Absolute Differences with optional
Accumulate (USAD8 and USADAS).

A1.2.3 Status register transfer instructions

The status register transfer instructions transfer the contents of the CPSR or an SPSR to or from a
general-purpose register. Writing to the CPSR can:

. set the values of the condition code flags

. set the values of the interrupt enable bits

. set the processor mode and state

. alter the endianness of Load and Store operations.

A1.2.4 Load and store instructions

The following load and store instructions are available:
. Load and Store Register

. Load and Store Multiple registers on page A1-9
. Load and Store Register Exclusive on page A1-9.

There are also swap and swap byte instructions, but their use is deprecated in ARMv®6. It is recommended
that all software migrates to using the load and store register exclusive instructions.

Load and Store Register

Load Register instructions can load a 64-bit doubleword, a 32-bit word, a 16-bit halfword, or an 8-bit byte
from memory into a register or registers. Byte and halfword loads can be automatically zero-extended or
sign-extended as they are loaded.

Store Register instructions can store a 64-bit doubleword, a 32-bit word, a 16-bit halfword, or an 8-bit byte
from a register or registers to memory.

From ARMv6, unaligned loads and stores of words and halfwords are supported, accessing the specified
byte addresses. Prior to ARMv6, unaligned 32-bit loads rotated data, all 32-bit stores were aligned, and the
other affected instructions UNPREDICTABLE.

A1-8 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Introduction to the ARM Architecture

Load and Store Register instructions have three primary addressing modes, all of which use a base register
and an offset specified by the instruction:

. In offset addressing, the memory address is formed by adding or subtracting an offset to or from the
base register value.

. In pre-indexed addressing, the memory address is formed in the same way as for offset addressing.
As a side effect, the memory address is also written back to the base register.

. In post-indexed addressing, the memory address is the base register value. As a side effect, an offset
is added to or subtracted from the base register value and the result is written back to the base register.

In each case, the offset can be either an immediate or the value of an index register. Register-based offsets
can also be scaled with shift operations.

As the PC is a general-purpose register, a 32-bit value can be loaded directly into the PC to perform a jump
to any address in the 4GB memory space.

Load and Store Multiple registers

Load Multiple (LDM) and Store Multiple (STM) instructions perform a block transfer of any number of
the general-purpose registers to or from memory. Four addressing modes are provided:

. pre-increment

. post-increment
. pre-decrement
. post-decrement.

The base address is specified by a register value, which can be optionally updated after the transfer. As the
subroutine return address and PC values are in general-purpose registers, very efficient subroutine entry and
exit sequences can be constructed with LDM and STM:

. A single STM instruction at subroutine entry can push register contents and the return address onto the
stack, updating the stack pointer in the process.

. A single LDM instruction at subroutine exit can restore register contents from the stack, load the PC
with the return address, and update the stack pointer.

LDM and STM instructions also allow very efficient code for block copies and similar data movement
algorithms.

Load and Store Register Exclusive

These instructions support cooperative memory synchronization. They are designed to provide the atomic
behavior required for semaphores without locking all system resources between the load and store phases.
See LDREX on page A4-52 and STREX on page A4-202 for details.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A1-9

Introduction to the ARM Architecture

A1.2.5 Coprocessor instructions
There are three types of coprocessor instructions:
Data-processing instructions
These start a coprocessor-specific internal operation.
Data transfer instructions
These transfer coprocessor data to or from memory. The address of the transfer is calculated
by the ARM processor.
Register transfer instructions
These allow a coprocessor value to be transferred to or from an ARM register, or a pair of
ARM registers.
A1.2.6 Exception-generating instructions
Two types of instruction are designed to cause specific exceptions to occur.
Software interrupt instructions
SWI instructions cause a software interrupt exception to occur. These are normally used to
make calls to an operating system, to request an OS-defined service. The exception entry
caused by a SWI instruction also changes to a privileged processor mode. This allows an
unprivileged task to gain access to privileged functions, but only in ways permitted by the
OS.
Software breakpoint instructions
BKPT instructions cause an abort exception to occur. If suitable debugger software is installed
on the abort vector, an abort exception generated in this fashion is treated as a breakpoint.
If debug hardware is present in the system, it can instead treat a BKPT instruction directly as
a breakpoint, preventing the abort exception from occurring.
In addition to the above, the following types of instruction cause an Undefined Instruction exception to
occur:
. coprocessor instructions which are not recognized by any hardware coprocessor
. most instruction words that have not yet been allocated a meaning as an ARM instruction.
In each case, this exception is normally used either to generate a suitable error or to initiate software
emulation of the instruction.
A1-10 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Introduction to the ARM Architecture

A1.3 Thumb instruction set

The Thumb instruction set is a subset of the ARM instruction set, with each instruction encoded in 16 bits
instead of 32 bits. For details see Chapter A6 The Thumb Instruction Set.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A1-11

Introduction to the ARM Architecture

A1-12 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Chapter A2
Programmers’ Model

This chapter introduces the ARM® Programmers’ Model. It contains the following sections:
. Data types on page A2-2

. Processor modes on page A2-3

. Registers on page A2-4

. General-purpose registers on page A2-6

. Program status registers on page A2-11

. Exceptions on page A2-16

. Endian support on page A2-30

. Unaligned access support on page A2-38

. Synchronization primitives on page A2-44

. The Jazelle Extension on page A2-53

. Saturated integer arithmetic on page A2-69.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-1

Programmers’ Model

A2.1 Data types

ARM processors support the following data types:

Byte 8 bits

Halfword 16 bits

Word 32 bits

Note

. Support for halfwords was introduced in version 4.

. ARMYV6 has introduced unaligned data support for words and halfwords. See Unaligned access
support on page A2-38 for more information.

. When any of these types is described as unsigned, the N-bit data value represents a non-negative
integer in the range O to +2N-1, using normal binary format.

. When any of these types is described as signed, the N-bit data value represents an integer in the range
-2N-1 to +2N-1-1 using two's complement format.

. Most data operations, for example ADD, are performed on word quantities. Long multiplies support
64-bit results with or without accumulation. ARMVSTE introduced some halfword multiply
operations. ARMv6 introduced a variety of Single Instruction Multiple Data (SIMD) instructions
operating on two halfwords or four bytes in parallel.

. Load and store operations can transfer bytes, halfwords, or words to and from memory, automatically
zero-extending or sign-extending bytes or halfwords as they are loaded. Load and store operations
that transfer two or more words to and from memory are also provided.

. ARM instructions are exactly one word and are aligned on a four-byte boundary. Thumb® instructions
are exactly one halfword and are aligned on a two-byte boundary. Jazelle® opcodes are a variable
number of bytes in length and can appear at any byte alignment.

A2-2 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

A2.2 Processor modes

The ARM architecture supports the seven processor modes shown in Table A2-1.

Table A2-1 ARM processor modes

Processor mode Mode number Description

User usr 0b10000 Normal program execution mode

FIQ fiq 0b10001 Supports a high-speed data transfer or channel process

IRQ irq 0b10010 Used for general-purpose interrupt handling

Supervisor svc 0b10011 A protected mode for the operating system

Abort abt 0b10111 Implements virtual memory and/or memory protection

Undefined und 0b11011 Supports software emulation of hardware coprocessors

System sys 0b11111 Runs privileged operating system tasks (ARMv4 and
above)

Mode changes can be made under software control, or can be caused by external interrupts or exception
processing.

Most application programs execute in User mode. When the processor is in User mode, the program being
executed is unable to access some protected system resources or to change mode, other than by causing an
exception to occur (see Exceptions on page A2-16). This allows a suitably-written operating system to
control the use of system resources.

The modes other than User mode are known as privileged modes. They have full access to system resources
and can change mode freely. Five of them are known as exception modes:

. FIQ

. IRQ

. Supervisor
. Abort

. Undefined.

These are entered when specific exceptions occur. Each of them has some additional registers to avoid
corrupting User mode state when the exception occurs (see Registers on page A2-4 for details).

The remaining mode is System mode, which is not entered by any exception and has exactly the same
registers available as User mode. However, it is a privileged mode and is therefore not subject to the User
mode restrictions. It is intended for use by operating system tasks that need access to system resources, but
wish to avoid using the additional registers associated with the exception modes. Avoiding such use ensures
that the task state is not corrupted by the occurrence of any exception.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-3

Programmers’ Model

A2.3 Registers

The ARM processor has a total of 37 registers:

. Thirty-one general-purpose registers, including a program counter. These registers are 32 bits wide
and are described in General-purpose registers on page A2-6.

. Six status registers. These registers are also 32 bits wide, but only some of the 32 bits are allocated
or need to be implemented. The subset depends on the architecture variant supported. These are
described in Program status registers on page A2-11.

Registers are arranged in partially overlapping banks, with the current processor mode controlling which
bank is available, as shown in Figure A2-1 on page A2-5. At any time, 15 general-purpose registers (R0 to
R14), one or two status registers, and the program counter are visible. Each column of Figure A2-1 on
page A2-5 shows which general-purpose and status registers are visible in the indicated processor mode.

A2-4 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

indicates that the normal register used by User or System mode has
been replaced by an alternative register specific to the exception mode

Modes
Privileged modes
Exception modes
User System Supervisor Abort Undefined Interrupt Fast interrupt
RO RO RO RO RO RO RO
R1 R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4 R4
R5 R5 R5 RS R5 RS R5
R6 R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7 R7
R8 R8 R8 R8 R8 R8 R8_fig
R9 R9 R9 R9 R9 R9 R9_fiq
R10 R10 R10 R10 R10 R10 R10_fig
R11 R11 R11 R11 R11 R11 R11_fiq
R12 R12 R12 R12 R12 R12 R12_fig
R13 R13 R13_svc R13_abt . R13_und R13_irq R13_fig
R14 R14 R14_svc R14_abt KN R14_und R14_irq R14_fiq
PC PC PC PC PC PC PC
‘ CPSR CPSR CPSR CPSR CPSR CPSR CPSR
SPSR_sve SPSR_abt [SPSR_und SPSR_irq SPSR_fiq

Figure A2-1 Register organization

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

A2-5

Programmers’ Model

A2.4

A2.4.1

A2.4.2

General-purpose registers

The general-purpose registers RO to R15 can be split into three groups. These groups differ in the way they
are banked and in their special-purpose uses:

o The unbanked registers, RO to R7
o The banked registers, RS to R14
. Register 15, the PC, is described in Register 15 and the program counter on page A2-9.

The unbanked registers, RO to R7

Registers RO to R7 are unbanked registers. This means that each of them refers to the same 32-bit physical
register in all processor modes. They are completely general-purpose registers, with no special uses implied
by the architecture, and can be used wherever an instruction allows a general-purpose register to be
specified.

The banked registers, R8 to R14

Registers R8 to R14 are banked registers. The physical register referred to by each of them depends on the
current processor mode. Where a particular physical register is intended, without depending on the current
processor mode, a more specific name (as described below) is used. Almost all instructions allow the banked
registers to be used wherever a general-purpose register is allowed.

Note

There are a few exceptions to this rule for processors pre-ARMv6, and they are noted in the individual
instruction descriptions. Where a restriction exists on the use of banked registers, it always applies to all of
R8 to R14. For example, R8 to R12 are subject to such restrictions even in systems in which FIQ mode is
never used and so only one physical version of the register is ever in use.

Registers R8 to R12 have two banked physical registers each. One is used in all processor modes other than
FIQ mode, and the other is used in FIQ mode. Where it is necessary to be specific about which version is

being referred to, the first group of physical registers are referred to as R8_usr to R12_usr and the second

group as R8_fiq to R12_fiq.

Registers R8 to R12 do not have any dedicated special purposes in the architecture. However, for interrupts
that are simple enough to be processed using registers R8 to R14 only, the existence of separate FIQ mode
versions of these registers allows very fast interrupt processing.

Registers R13 and R14 have six banked physical registers each. One is used in User and System modes, and
each of the remaining five is used in one of the five exception modes. Where it is necessary to be specific
about which version is being referred to, you use names of the form:

R13_<mode>
R14_<mode>

where <mode> is the appropriate one of usr, svc (for Supervisor mode), abt, und, irq and fig.

A2-6

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

Register R13 is normally used as a stack pointer and is also known as the SP. The SRS instruction, introduced
in ARMv®6, is the only ARM instruction that uses R13 in a special-case manner. There are other such
instructions in the Thumb instruction set, as described in Chapter A6 The Thumb Instruction Set.

Each exception mode has its own banked version of R13. Suitable uses for these banked versions of R13
depend on the architecture version:

. In architecture versions earlier than ARMv6, each banked version of R13 will normally be initialized
to point to a stack dedicated to that exception mode. On entry, the exception handler typically stores
the values of other registers that it wants to use on this stack. By reloading these values into the
register when it returns, the exception handler can ensure that it does not corrupt the state of the
program that was being executed when the exception occurred.

If fewer exception-handling stacks are desired in a system than this implies, it is possible instead to
initialize the banked version of R13 for an exception mode to point to a small area of memory that is
used for temporary storage while transferring to another exception mode and its stack. For example,
suppose that there is a requirement for an IRQ handler to use the Supervisor mode stack to store
SPSR_irq, RO to R3, R12, R14_irq, and then to execute in Supervisor mode with IRQs enabled. This
can be achieved by initializing R13_irq to point to a four-word temporary storage area, and using the
following code sequence on entry to the handler:

STMIA R13, (RO-R3) ; Put RO-R3 1into temporary storage
MRS RO, SPSR ; Move banked SPSR and R12-R14 into
Mov R1, R12 ; unbanked registers

Mov R2, R13

Mov R3, R14

MRS R12, CPSR Use read/modify/write sequence

BIC R12, R12, #0@x1F ; on CPSR to switch to Supervisor

ORR R12, R12, #0x13 ; mode

MSR CPSR_c, R12

STMFD R13!, (R1,R3) ; Push original {R12, R14_irq}, then

STR RO, [R13,#-20]! ; SPSR_irg with a gap for RO-R3

LDMIA R2, {RO-R3} ; Reload RO-R3 from temporary storage

BIC R12, R12, #0x80 ; Modify and write CPSR again to

MSR CPSR_c, R12 re-enable IRQs

STMIB R13, {RO-R3} ; Store RO-R3 in the gap left on the
; stack for them

. In ARMV6 and above, it is recommended that the OS designer should decide how many
exception-handling stacks are required in the system, and select a suitable processor mode in which
to handle the exceptions that use each stack. For example, one exception-handling stack might be
required to be locked into real memory and be used for aborts and high-priority interrupts, while
another could use virtual memory and be used for SWIs, Undefined instructions and low-priority
interrupts. Suitable processor modes in this example might be Abort mode and Supervisor mode
respectively.

The banked version of R13 for each of the selected modes is then initialized to point to the
corresponding stack, and the other banked versions of R13 are normally not used. Each exception
handler starts with an SRS instruction to store the exception return information to the appropriate
stack, followed (if necessary) by a CPS instruction to switch to the appropriate mode and possibly

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-7

Programmers’ Model

re-enable interrupts, after which other registers can be saved on that stack. So in the above example,
an Undefined Instruction handler that wants to re-enable interrupts immediately would start with the
following two instructions:

SRSFD #svc_mode!
CPSIE 1, #svc_mode

The handler can then operate entirely in Supervisor mode, using the virtual memory stack pointed to
by R13_svc.

Register R14 (also known as the Link Register or LR) has two special functions in the architecture:

o In each mode, the mode's own version of R14 is used to hold subroutine return addresses. When a
subroutine call is performed by a BL or BLX instruction, R14 is set to the subroutine return address. The
subroutine return is performed by copying R14 back to the program counter. This is typically done
in one of the two following ways:

— Execute a BX LR instruction.

Note

AnMOV PC, LR instruction will perform the same function as BX LR if the code to which it returns
uses the current instruction set, but will not return correctly from an ARM subroutine called
by Thumb code, or from a Thumb subroutine called by ARM code. The use of MOV PC,LR
instructions for subroutine return is therefore deprecated.

— On subroutine entry, store R14 to the stack with an instruction of the form:
STMFD SP!,{<registers>,LR}
and use a matching instruction to return:
LDMFD SP!,{<registers>,PC}

. When an exception occurs, the appropriate exception mode's version of R14 is set to the exception
return address (offset by a small constant for some exceptions). The exception return is performed in
a similar way to a subroutine return, but using slightly different instructions to ensure full restoration
of the state of the program that was being executed when the exception occurred. See Exceptions on
page A2-16 for more details.

Register R14 can be treated as a general-purpose register at all other times.

Note

When nested exceptions are possible, the two special-purpose uses might conflict. For example, if an IRQ
interrupt occurs when a program is being executed in User mode, none of the User mode registers are
necessarily corrupted. But if an interrupt handler running in IRQ mode re-enables IRQ interrupts and a
nested IRQ interrupt occurs, any value the outer interrupt handler is holding in R14_irq at the time is
overwritten by the return address of the nested interrupt.

System programmers need to be careful about such interactions. The usual way to deal with them is to
ensure that the appropriate version of R14 does not hold anything significant at times when nested
exceptions can occur. When this is hard to do in a straightforward way, it is usually best to change to another

A2-8

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

processor mode during entry to the exception handler, before re-enabling interrupts or otherwise allowing
nested exceptions to occur. (In ARMv4 and above, System mode is often the best mode to use for this

purpose.)

A2.4.3 Register 15 and the program counter

Register R15 (R15) is often used in place of the other general-purpose registers to produce various
special-case effects. These are instruction-specific and so are described in the individual instruction
descriptions.

There are also many instruction-specific restrictions on the use of R15. these are also noted in the individual
instruction descriptions. Usually, the instruction is UNPREDICTABLE if R15 is used in a manner that breaks
these restrictions.

If an instruction description neither describes a special-case effect when R15 is used nor places restrictions
on its use, R15 is used to read or write the Program Counter (PC), as described in:

. Reading the program counter

. Writing the program counter on page A2-10.

Reading the program counter
When an instruction reads the PC, the value read depends on which instruction set it comes from:

. For an ARM instruction, the value read is the address of the instruction plus 8 bytes. Bits [1:0] of this
value are always zero, because ARM instructions are always word-aligned.

. For a Thumb instruction, the value read is the address of the instruction plus 4 bytes. Bit [0] of this
value is always zero, because Thumb instructions are always halfword-aligned.

This way of reading the PC is primarily used for quick, position-independent addressing of nearby
instructions and data, including position-independent branching within a program.

An exception to the above rule occurs when an ARM STR or STM instruction stores R15. Such instructions
can store either the address of the instruction plus 8 bytes, like other instructions that read R15, or the
address of the instruction plus 12 bytes. Whether the offset of 8 or the offset of 12 is used is
IMPLEMENTATION DEFINED. An implementation must use the same offset for all ARM STR and STM
instructions that store R15. It cannot use 8 for some of them and 12 for others.

Because of this exception, it is usually best to avoid the use of STR and STM instructions that store R15. If this
is difficult, use a suitable instruction sequence in the program to ascertain which offset the implementation
uses. For example, if RO points to an available word of memory, then the following instructions put the offset
of the implementation in RO:

SUB R1, PC, #4 ; R1 = address of following STR instruction
STR PC, [RO] ; Store address of STR instruction + offset,
LDR RO, [RO] ; then reload it

SUB RO, RO, R1 ; Calculate the offset as the difference

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-9

Programmers’ Model

Note

The rules about how R15 is read apply only to reads by instructions. In particular, they do not necessarily
describe the values placed on a hardware address bus during instruction fetches. Like all other details of
hardware interfaces, such values are IMPLEMENTATION DEFINED.

Writing the program counter

When an instruction writes the PC, the normal result is that the value written to the PC is treated as an
instruction address and a branch occurs to that address.

Since ARM instructions are required to be word-aligned, values they write to the PC are normally expected
to have bits[1:0] == 0b00. Similarly, Thumb instructions are required to be halfword-aligned and so values
they write to the PC are normally expected to have bit[0] == 0.

The precise rules depend on the current instruction set state and the architecture version:

. In T variants of ARMv4 and above, including all variants of ARMv6 and above, bit[0] of a value
written to R15 in Thumb state is ignored unless the instruction description says otherwise. If bit[0]
of the PC is implemented (which depends on whether and how the Jazelle Extension is implemented),
then zero must be written to it regardless of the value written to bit[0] of R15.

o In ARMV6 and above, bits[1:0] of a value written to R15 in ARM state are ignored unless the
instruction description says otherwise. Bit[1] of the PC must be written as zero regardless of the value
written to bit[1] of R15. If bit[0] of the PC is implemented (which depends on how the Jazelle
Extension is implemented), then zero must be written to it.

o In all variants of ARMv4 and ARMVS, bits[1:0] of a value written to R15 in ARM state must be 0b00.
If they are not, the results are UNPREDICTABLE.

Several instructions have their own rules for interpreting values written to R15. For example, BX and other
instructions designed to transfer between ARM and Thumb states use bit[0] of the value to select whether
to execute the code at the destination address in ARM state or Thumb state. Special rules of this type are
described on the individual instruction pages, and override the general rules in this section.

A2-10

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A2.5

A2.5.1

A2.5.2

Programmers’ Model

Program status registers

The Current Program Status Register (CPSR) is accessible in all processor modes. It contains condition
code flags, interrupt disable bits, the current processor mode, and other status and control information. Each
exception mode also has a Saved Program Status Register (SPSR), that is used to preserve the value of the
CPSR when the associated exception occurs.

Note

User mode and System mode do not have an SPSR, because they are not exception modes. All instructions
that read or write the SPSR are UNPREDICTABLE when executed in User mode or System mode.

The format of the CPSR and the SPSRs is shown below.

31 30 29 28 27 26 25 24 23 20 19 16 15 109 8 7 6 5 4 0

N|Z|C|{V|Q]| Res |J | RESERVED | GE[3:0] RESERVED E|(A|I|F|T M[4:0]

Types of PSR bits
PSR bits fall into four categories, depending on the way in which they can be updated:

Reserved bits Reserved for future expansion. Implementations must read these bits as 0 and ignore
writes to them. For maximum compatibility with future extensions to the
architecture, they must be written with values read from the same bits.

User-writable bits Can be written from any mode. The N, Z, C, V, Q, GE[3:0], and E bits are
user-writable.

Privileged bits Can be written from any privileged mode. Writes to privileged bits in User mode are
ignored. The A, I, F, and M[4:0] bits are privileged.

Execution state bits Can be written from any privileged mode. Writes to execution state bits in User
mode are ignored. The J and T bits are execution state bits, and are always zero in
ARM state.

Privileged MSR instructions that write to the CPSR execution state bits must write
zeros to them, in order to avoid changing them. If ones are written to either or both
of them, the resulting behavior is UNPREDICTABLE. This restriction applies only to
the CPSR execution state bits, not the SPSR execution state bits.

The condition code flags

The N, Z, C, and V (Negative, Zero, Carry and oVerflow) bits are collectively known as the condition code
flags, often referred to as flags. The condition code flags in the CPSR can be tested by most instructions to
determine whether the instruction is to be executed.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-11

Programmers’ Model

The condition code flags are usually modified by:

Execution of a comparison instruction (CMN, CMP, TEQ or TST).

Execution of some other arithmetic, logical or move instruction, where the destination register of the
instruction is not R15. Most of these instructions have both a flag-preserving and a flag-setting
variant, with the latter being selected by adding an S qualifier to the instruction mnemonic. Some of
these instructions only have a flag-preserving version. This is noted in the individual instruction
descriptions.

In either case, the new condition code flags (after the instruction has been executed) usually mean:

N

Is set to bit 31 of the result of the instruction. If this result is regarded as a two's complement
signed integer, then N = 1 if the result is negative and N = 0 if it is positive or zero.

Is set to 1 if the result of the instruction is zero (this often indicates an equal result from a
comparison), and to 0 otherwise.
Is set in one of four ways:

. For an addition, including the comparison instruction CMN, C is set to 1 if the addition
produced a carry (that is, an unsigned overflow), and to O otherwise.

o For a subtraction, including the comparison instruction CMP, C is set to O if the
subtraction produced a borrow (that is, an unsigned underflow), and to 1 otherwise.

. For non-addition/subtractions that incorporate a shift operation, C is set to the last bit
shifted out of the value by the shifter.

. For other non-addition/subtractions, C is normally left unchanged (but see the
individual instruction descriptions for any special cases).
Is set in one of two ways:

. For an addition or subtraction, V is set to 1 if signed overflow occurred, regarding the
operands and result as two's complement signed integers.

. For non-addition/subtractions, V is normally left unchanged (but see the individual
instruction descriptions for any special cases).

The flags can be modified in these additional ways:

Execution of an MSR instruction, as part of its function of writing a new value to the CPSR or SPSR.

Execution of MRC instructions with destination register R15. The purpose of such instructions is to
transfer coprocessor-generated condition code flag values to the ARM processor.

Execution of some variants of the LDM instruction. These variants copy the SPSR to the CPSR, and
their main intended use is for returning from exceptions.

Execution of an RFE instruction in a privileged mode that loads a new value into the CPSR from
memory.

Execution of flag-setting variants of arithmetic and logical instructions whose destination register is
R15. These also copy the SPSR to the CPSR, and are intended for returning from exceptions.

A2-12

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A2.5.3

A2.5.4

A2.5.5

Programmers’ Model

The Q flag

In E variants of ARMvS5 and above, bit[27] of the CPSR is known as the Q flag and is used to indicate
whether overflow and/or saturation has occurred in some DSP-oriented instructions. Similarly, bit[27] of
each SPSR is a Q flag, and is used to preserve and restore the CPSR Q flag if an exception occurs. See
Saturated integer arithmetic on page A2-69 for more information.

In architecture versions prior to ARMvS, and in non-E variants of ARMvS, bit[27] of the CPSR and SPSRs
must be treated as a reserved bit, as described in Types of PSR bits on page A2-11.

The GE[3:0] bits

In ARMvV6, the SIMD instructions use bits[19:16] as Greater than or Equal (GE) flags for individual bytes
or halfwords of the result. You can use these flags to control a later SEL instruction, see SEL on page A4-127
for more details.

Instructions that operate on halfwords:
. set or clear GE[3:2] together, based on the result of the top halfword calculation

o set or clear GE[1:0] together, based on the result of the bottom halfword calculation.

Instructions that operate on bytes:

. set or clear GE[3] according to the result of the top byte calculation

. set or clear GE[2] according to the result of the second byte calculation
. set or clear GE[1] according to the result of the third byte calculation

. set or clear GE[0] according to the result of the bottom byte calculation.

Each bit is set (otherwise cleared) if the results of the corresponding calculation are as follows:

. for unsigned byte addition, if the result is greater than or equal to 28

. for unsigned halfword addition, if the result is greater than or equal to 216
. for unsigned subtraction, if the result is greater than or equal to zero

. for signed arithmetic, if the result is greater than or equal to zero.

In architecture versions prior to ARMV6, bits[19:16] of the CPSR and SPSRs must be treated as a reserved
bit, as described in Types of PSR bits on page A2-11.

The E bit

From ARMV6, bit[9] controls load and store endianness for data handling. See Instructions to change CPSR
E bit on page A2-36. This bit is ignored by instruction fetches.

In architecture versions prior to ARMv6, bit[9] of the CPSR and SPSRs must be treated as a reserved bit,
as described in Types of PSR bits on page A2-11.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-13

Programmers’ Model

A2.5.6 The interrupt disable bits

A, 1, and F are the interrupt disable bits:

A bit

I bit

F bit

Disables imprecise data aborts when it is set. This is available only in ARMv6 and above.
In earlier versions, bit[8] of CPSR and SPSRs must be treated as a reserved bit, as described
in Types of PSR bits on page A2-11.

Disables IRQ interrupts when it is set.

Disables FIQ interrupts when it is set.

A2.5.7 The mode bits

M[4:0] are the mode bits. These determine the mode in which the processor operates. Their interpretation
is shown in Table A2-2.

Table A2-2 The mode bits

M[4:0] Mode Accessible registers

0b10000 User PC, R14 to RO, CPSR

0b10001 FIQ PC, R14_fiq to R8_fiq, R7 to RO, CPSR, SPSR_fiq
0b10010 1IRQ PC, R14_irq, R13_irq, R12 to RO, CPSR, SPSR_irq
0b10011 Supervisor PC, R14_svc, R13_svc, R12 to RO, CPSR, SPSR_svc
0b10111 Abort PC, R14_abt, R13_abt, R12 to RO, CPSR, SPSR_abt
0b11011 Undefined PC, R14_und, R13_und, R12 to RO, CPSR, SPSR_und
Obl1111 System PC, R14 to RO, CPSR (ARMv4 and above)

Not all combinations of the mode bits define a valid processor mode. Only those combinations explicitly
described can be used. If any other value is programmed into the mode bits M[4:0], the result is
UNPREDICTABLE.

A2-14

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A2.5.8

A2.5.9

Programmers’ Model

The T and J bits

The T and J bits select the current instruction set, as shown in Table A2-3.

Table A2-3 The T and J bits

J T Instruction set

0 0 ARM

0 1 Thumb

1 0 Jazelle

1 1 RESERVED

The T bit exists on t variants of ARMv4, and on all variants of ARMvS5 and above. on non-T variants of
ARMv4, the T bit must be treated as a reserved bit, as described in Types of PSR bits on page A2-11.

The Thumb instruction set is implemented on T variants of ARMv4 and ARMVS, and on all variants of
ARMUV6 and above. instructions that switch between ARM and Thumb state execution can be used freely
on implementation of these architectures.

The Thumb instruction set is not implemented on non-T variants of ARMyvS. If the Thumb instruction set is
selected by setting T ==1 on these architecture variants, the next instruction executed will cause an
Undefined Instruction exception (see Undefined Instruction exception on page A2-19). Instructions that
switch between ARM and Thumb state execution can be used on implementation of these architecture
variants, but only function correctly as long as the program remains in ARM state. If the program attempts
to switch to Thumb state, the first instruction executed after that switch causes an Undefined Instruction
exception. Entry into that exception then switches back to ARM state. The exception handler can detect that
this was the cause of the exception from the fact that the T bit of SPSR_und is set.

The J bit exists on ARMVSTE]J and on all variants of ARMv6 and above. On variants of ARMv4 and
ARMYVS, other than ARMVSTEJ, the J bit must be treated as a reserved bit, as described in Types of PSR bits
on page A2-11.

Hardware acceleration for Jazelle opcode execution can be implemented on ARMvS5TEJ and on ARMv6
and above. On these architecture variants, the BXJ instruction is used to switch from ARM state into Jazelle
state when the hardware accelerator is present and enabled. If the hardware accelerator is disabled, or not
present, the BXJ instruction behaves as a BX instruction, and the J bit remains clear. For more details, see The
Jazelle Extension on page A2-53.

Other bits

Other bits in the program status registers are reserved for future expansion. In general, programmers must
take care to write code in such a way that these bits are never modified. Failure to do this might result in
code that has unexpected side effects on future versions of the architecture. See Types of PSR bits on
page A2-11, and the usage notes for the MSR instruction on page A4-76 for more details.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-15

Programmers’ Model

A2.6 Exceptions
Exceptions are generated by internal and external sources to cause the processor to handle an event, such as
an externally generated interrupt or an attempt to execute an Undefined instruction. The processor state just
before handling the exception is normally preserved so that the original program can be resumed when the
exception routine has completed. More than one exception can arise at the same time.
The ARM architecture supports seven types of exception. Table A2-4 lists the types of exception and the
processor mode that is used to process each type. When an exception occurs, execution is forced from a fixed
memory address corresponding to the type of exception. These fixed addresses are called the exception
vectors.
Note
The normal vector at address 0x00000014 and the high vector at address 0xFFFF0014 are reserved for future
expansion.
Table A2-4 Exception processing modes
. Normal High vector
a
Exception type Mode VE address address
Reset Supervisor 0x00000000 OxFFFF0000
Undefined instructions Undefined 0x00000004 0xFFFF0004
Software interrupt (SWI) Supervisor 0x00000008 0xFFFF0008
Prefetch Abort (instruction fetch memory abort) ~ Abort 0x0000000C OxFFFFo0QC
Data Abort (data access memory abort) Abort 0x00000010 OxFFFF0010
IRQ (interrupt) IRQ 0 0x00000018 OXFFFF0018
1 IMPLEMENTATION DEFINED
FIQ (fast interrupt) FIQ 0 0x0000001C OxFFFFOO1C
1 IMPLEMENTATION DEFINED
a. VE = vectored interrupt enable (CP15 control); RAZ when not implemented.
A2-16 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

When an exception occurs, the banked versions of R14 and the SPSR for the exception mode are used to
save state as follows:

R14_<exception_mode> = return 1link
SPSR_<exception_mode> = CPSR
CPSR[4:0] = exception mode number

CPSR[5] = @ /% Execute in ARM state =/
if <exception_mode> == Reset or FIQ then
CPSR[6] =1 /% Disable fast interrupts =/
/+ else CPSR[6] is unchanged =/
CPSR[7] =1 /% Disable normal interrupts =/
if <exception_mode> != UNDEF or SWI then
CPSR[8] =1 /% Disable imprecise aborts (v6 only) =/
/+ else CPSR[8] is unchanged =/
CPSR[9] = CP15_regl_EEbit /+ Endianness on exception entry =/

PC = exception vector address

To return after handling the exception, the SPSR is moved into the CPSR, and R14 is moved to the PC. This
can be done atomically in two ways:

. using a data-processing instruction with the S bit set, and the PC as the destination
. using the Load Multiple with Restore CPSR instruction, as described in LDM (3) on page A4-40.

In addition, in ARMVG, the RFE instruction (see RFE on page A4-113) can be used to load the CPSR and PC
from memory, so atomically returning from an exception to a PC and CPSR that was previously saved in
memory.

Collectively these mechanisms define all of the mechanisms which perform a return from exception.

The following sections show what happens automatically when the exception occurs, and also show the
recommended data-processing instruction to use to return from each exception. This instruction is always a
MOVS or SUBS instruction with the PC as its destination.

Note

When the recommended data-processing instruction is a SUBS and a Load Multiple with Restore CPSR
instruction is used to return from the exception handler, the subtraction must still be performed. This is
usually done at the start of the exception handler, before the return link is stored to memory.

For example, an interrupt handler that wishes to store its return link on the stack might use instructions of
the following form at its entry point:

SUB R14, R14, #4
STMFD SP!, {<other_registers>, R14}

and return using the instruction:

LDMFD SP!, {<other_registers>, PC}A

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-17

Programmers’ Model

A2.6.1 ARMv6 extensions to the exception model

In ARMv6 and above, the exception model is extended as follows:

. An imprecise data abort mechanism that allows some types of data abort to be treated
asynchronously. The resulting exceptions behave like interrupts, except that they use Abort mode and
its banked registers. This mechanism includes a mask bit (the A bit) in the PSRs, in order to ensure
that imprecise data aborts do not occur while another abort is being handled. The mechanism is
described in Imprecise data aborts on page A2-23.

. Support for vectored interrupts controlled by the VE bit in the system control coprocessor (see
Vectored interrupt support on page A2-26). It is IMPLEMENTATION DEFINED whether support for this
mechanism is included in earlier versions of the architecture.

. Support for a low interrupt latency configuration controlled by the FI bit in the system control
coprocessor (see Low interrupt latency configuration on page A2-27). It is IMPLEMENTATION
DEFINED whether support for this mechanism is included in earlier versions of the architecture.

. Three new instructions (CPS, SRS, RFE) to improve nested stack handling of different exceptions in a
common mode. CPS can also be used to efficiently enable or disable the interrupt and imprecise abort
masks, either within a mode, or while transitioning from a privileged mode to any other mode. See
New instructions to improve exception handling on page A2-28 for a brief description.

A2.6.2 Reset

When the Reset input is asserted on the processor, the ARM processor immediately stops execution of the

current instruction. When Reset is de-asserted, the following actions are performed:

R14_svc = UNPREDICTABLE value

SPSR_svc = UNPREDICTABLE value

CPSR[4:0] = 0b10011 /+ Enter Supervisor mode =/

CPSR[5] =10 /* Execute in ARM state x/

CPSR[6] =1 /+ Disable fast interrupts =/

CPSR[7] =1 /+ Disable normal interrupts =/

CPSR[8] =1 /« Disable Imprecise Aborts (v6 only) =/

CPSR[9] = CP15_regl_EEbit /+ Endianness on exception entry =/

if high vectors configured then

PC = OxFFFF0000
else
PC = 0x00000000
After Reset, the ARM processor begins execution at address 0x00000000 or 0xFFFF0000 in Supervisor mode
with interrupts disabled.
Note

There is no architecturally defined way of returning from a Reset.

A2-18 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

A2.6.3 Undefined Instruction exception

If the ARM processor executes a coprocessor instruction, it waits for any external coprocessor
to acknowledge that it can execute the instruction. If no coprocessor responds, an Undefined Instruction
exception occurs.

If an attempt is made to execute an instruction that is UNDEFINED, an Undefined Instruction exception occurs
(see Extending the instruction set on page A3-32).

The Undefined Instruction exception can be used for software emulation of a coprocessor in a system that
does not have the physical coprocessor (hardware), or for general-purpose instruction set extension by
software emulation.

When an Undefined Instruction exception occurs, the following actions are performed:

R14_und = address of next instruction after the Undefined instruction
SPSR_und = CPSR
CPSR[4:0] = 0bl11011 /% Enter Undefined Instruction mode =/
CPSR[5] =10 /+ Execute in ARM state x/
/+ CPSR[6] 1is unchanged =/
CPSR[7] =1 /+ Disable normal interrupts =/
/% CPSR[8] 1is unchanged =/
CPSR[9] = CP15_regl_EEbit /# Endianness on exception entry =/
if high vectors configured then
PC = OxFFFFo004
else

PC = 0x00000004
To return after emulating the Undefined instruction use:
MOVS PC,R14

This restores the PC (from R14_und) and CPSR (from SPSR_und) and returns to the instruction following
the Undefined instruction.

In some coprocessor designs, an internal exceptional condition caused by one coprocessor instruction is
signaled imprecisely by refusing to respond to a later coprocessor instruction. In these circumstances, the
Undefined Instruction handler takes whatever action is necessary to clear the exceptional condition, then
returns to the second coprocessor instruction. To do this use:

SUBS PC,R14,#4

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-19

Programmers’ Model

A2.6.4 Software Interrupt exception

The Software Interrupt instruction (SWI) enters Supervisor mode to request a particular supervisor (operating
system) function. When a SWI is executed, the following actions are performed:

R14_svc = address of next instruction after the SWI instruction
SPSR_svc = CPSR
CPSR[4:0] = 0b10011 /+ Enter Supervisor mode x/
CPSR[5] =10 /% Execute in ARM state =/
/% CPSR[6] is unchanged =/
CPSR[7] =1 /+ Disable normal interrupts =/
/+ CPSR[8] is unchanged =/
CPSR[9] = CP15_regl_EEbit /% Endianness on exception entry s/

if high vectors configured then
PC = OxFFFF0008

else
PC = 0x00000008

To return after performing the SWI operation, use the following instruction to restore the PC
(from R14_svc) and CPSR (from SPSR_svc) and return to the instruction following the SWI:

MOVS PC,R14

A2.6.5 Prefetch Abort (instruction fetch memory abort)

A memory abort is signaled by the memory system. Activating an abort in response to an instruction fetch
marks the fetched instruction as invalid. A Prefetch Abort exception is generated if the processor tries to
execute the invalid instruction. If the instruction is not executed (for example, as a result of a branch being
taken while it is in the pipeline), no Prefetch Abort occurs.

In ARMVS5 and above, a Prefetch Abort exception can also be generated as the result of executing a BKPT
instruction. For details, see BKPT on page A4-14 (ARM instruction) and BKPT on page A7-24 (Thumb
instruction).

When an attempt is made to execute an aborted instruction, the following actions are performed:

R14_abt = address of the aborted instruction + 4
SPSR_abt = CPSR

CPSR[4:0] = 0b10111 /% Enter Abort mode «/
CPSR[5] =10 /% Execute in ARM state =/
/% CPSR[6] is unchanged =/

CPSR[7] =1 /+ Disable normal interrupts =/
CPSR[8] =1 /+ Disable Imprecise Data Aborts (v6 only) =/
CPSR[9] = CP15_regl_EEbit /+ Endianness on exception entry «/
if high vectors configured then

PC = OxFFFF000C
else

PC = 0x0000000C

A2-20 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

To return after fixing the reason for the abort, use:
SUBS PC,R14,#4

This restores both the PC (from R14_abt) and CPSR (from SPSR_abt), and returns to the aborted
instruction.

A2.6.6 Data Abort (data access memory abort)

A memory abort is signaled by the memory system. Activating an abort in response to a data access (load
or store) marks the data as invalid. A Data Abort exception occurs before any following instructions or
exceptions have altered the state of the CPU. The following actions are performed:

R14_abt = address of the aborted instruction + 8
SPSR_abt = CPSR
CPSR[4:0] = 0b10111 /* Enter Abort mode =/
CPSR[5] =10 /+ Execute in ARM state #/
/% CPSR[6] 1is unchanged =/
CPSR[7] =1 /% Disable normal interrupts =/
CPSR[8] =1 /+ Disable Imprecise Data Aborts (v6 only) =/
CPSR[9] = CP15_regl_EEbit /+ Endianness on exception entry x/

if high vectors configured then
PC = OxFFFF0010

else
PC = 0x00000010

To return after fixing the reason for the abort use:
SUBS PC,R14,#8

This restores both the PC (from R14_abt) and CPSR (from SPSR_abt), and returns to re-execute the aborted
instruction.

If the aborted instruction does not need to be re-executed use:

SUBS PC,R14,#4

Effects of data-aborted instructions

Instructions that access data memory can modify memory by storing one or more values. If a Data Abort
occurs in such an instruction, the value of each memory location that the instruction stores to is:

. unchanged if the memory system does not permit write access to the memory location
. UNPREDICTABLE otherwise.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-21

Programmers’ Model

Instructions that access data memory can modify registers in the following ways:

By loading values into one or more of the general-purpose registers, that can include the PC.

By specitying base register write-back, in which the base register used in the address calculation has
a modified value written to it. All instructions that allow this to be specified have UNPREDICTABLE
results if base register write-back is specified and the base register is the PC, so only general-purpose
registers other than the PC can legitimately be modified in this way.

By loading values into coprocessor registers.

By modifying the CPSR.

If a Data Abort occurs, the values left in these registers are determined by the following rules:

1.

The PC value on entry to the Data Abort handler is 0x00000010 or 0xFFFF0010, and the R14_abt value
is determined from the address of the aborted instruction. Neither is affected in any way by the results
of any PC load specified by the instruction.

If base register write-back is not specified, the base register value is unchanged. This applies even if
the instruction loaded its own base register and the memory access to load the base register occurred
earlier than the aborting access.
For example, suppose the instruction is:

LDMIA RO, {RO,R1,R2}
and the implementation loads the new RO value, then the new R1 value and finally the new R2 value.

If a Data Abort occurs on any of the accesses, the value in the base register RO of the instruction is
unchanged. This applies even if it was the load of R1 or R2 that aborted, rather than the load of RO.

If base register write-back is specified, the value left in the base register is determined by the abort
model of the implementation, as described in Abort models on page A2-23.

If the instruction only loads one general-purpose register, the value in that register is unchanged.

If the instruction loads more than one general-purpose register, UNPREDICTABLE values are left in
destination registers that are neither the PC nor the base register of the instruction.

If the instruction loads coprocessor registers, UNPREDICTABLE values are left in the destination
coprocessor registers, unless otherwise specified in the instruction set description of the specific
COProcessor.

CPSR bits not defined as updated on exception entry maintain their current value.

A2-22

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A2.6.7

Programmers’ Model

Abort models

The abort model used by an ARM implementation is IMPLEMENTATION DEFINED, and is one of the
following:

Base Restored Abort Model

If a precise Data Abort occurs in an instruction that specifies base register write-back, the
value in the base register is unchanged. This is the only abort model permitted in ARMv6
and above.

Base Updated Abort Model

If a precise Data Abort occurs in an instruction that specifies base register write-back, the
base register write-back still occurs. This model is prohibited in ARMv6 and above.

In either case, the abort model applies uniformly across all instructions. An implementation does not use the
Base Restored Abort Model for some instructions and the Base Updated Abort Model for others.

Imprecise data aborts

An imprecise data abort, caused, for example, by an external error on a write that has been held in a Write
Buffer, is asynchronous to the execution of the causing instruction and might in reality occur many cycles
after the instruction that caused the memory access has retired. For this reason, the imprecise data abort
might occur at a time that the processor is in abort mode because of a precise abort, or might have live state
in abort mode, but be handling an interrupt.

To avoid the loss of the Abort mode state (R14 and SPSR_abt) in these cases, that would lead to the
processor entering an unrecoverable state, the existence of a pending imprecise data abort must be held by
the system until such time as the abort mode can safely be entered.

From ARMvV6, a mask is added into the CPSR (CPSR[8]) to control when an imprecise abort cannot be
accepted. This bit is referred to as the A bit. The imprecise data abort causes a Data Abort to be taken when
imprecise data aborts are not masked. When imprecise data aborts are masked, the implementation is
responsible for holding the presence of a pending imprecise abort until the mask is cleared and the abort is
taken. It is IMPLEMENTATION DEFINED whether more than one imprecise abort can be pended.

The A bit is set automatically on taking a Prefetch Abort, a Data Abort, an IRQ or FIQ interrupt, and on
reset.

The A bit can only be changed from a privileged mode.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-23

Programmers’ Model

A2.6.8

A2.6.9

Interrupt request (IRQ) exception

The IRQ exception is generated externally by asserting the IRQ input on the processor. It has a lower priority
than FIQ (see Table A2-1 on page A2-25), and is masked out when an FIQ sequence is entered.

Interrupts are disabled when the I bit in the CPSR is set. If the I bit is clear, ARM checks for an IRQ at
instruction boundaries.

Note

The I bit can only be changed from a privileged mode.

When an IRQ is detected, the following actions are performed:

address of next instruction to be executed + 4
CPSR
0b10010 /+ Enter IRQ mode =/
0 /+ Execute in ARM state =/
/% CPSR[6] is unchanged =/
CPSR[7] 1 /+ Disable normal interrupts =/
CPSR[8] =1 /+ Disable Imprecise Data Aborts (v6 only) %/
CPSR[9] CP15_regl_EEbit /+ Endianness on exception entry =/
if VE==0 then
if high vectors configured then
PC = OxFFFF0Q18

R14_irq
SPSR_irq
CPSR[4:0]
CPSR[5]

else
PC = 0x00000018
else
PC = IMPLEMENTATION DEFINED /% see page A2-26 =/

To return after servicing the interrupt, use:
SUBS PC,R14,#4

This restores both the PC (from R14_irq) and CPSR (from SPSR_irq), and resumes execution of the
interrupted code.

Fast interrupt request (FIQ) exception

The FIQ exception is generated externally by asserting the FIQ input on the processor. FIQ is designed to
support a data transfer or channel process, and has sufficient private registers to remove the need for register
saving in such applications, therefore minimizing the overhead of context switching.

Fast interrupts are disabled when the F bit in the CPSR is set. If the F bit is clear, ARM checks for an FIQ
at instruction boundaries.

Note

The F bit can only be changed from a privileged mode.

When an FIQ is detected, the following actions are performed:

A2-24

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A2.6.10

Programmers’ Model

R14_fig = address of next instruction to be executed + 4
SPSR_fig = CPSR
CPSR[4:0] = 0b10001 /+ Enter FIQ mode =/
CPSR[5] =10 /% Execute in ARM state =/
CPSR[6] =1 /% Disable fast interrupts =/
CPSR[7] =1 /% Disable normal interrupts =/
CPSR[8] =1 /+ Disable Imprecise Data Aborts (v6 only) =/
CPSR[9] = CP15_regl_EEbit /+ Endianness on exception entry =/
if VE==0 then
if high vectors configured then
PC = OxFFFF001C
else
PC = 0x0000001C
else

PC = IMPLEMENTATION DEFINED /% see page A2-26 =/
To return after servicing the interrupt, use:
SUBS PC, R14,#4

This restores both the PC (from R14_fiq) and CPSR (from SPSR_fiq), and resumes execution of the
interrupted code.

The FIQ vector is deliberately the last vector to allow the FIQ exception-handler software to be placed
directly at address 0x0000001C or OxFFFFOQ1C, without requiring a branch instruction from the vector.

Exception priorities
Table A2-1 shows the exception priorities:

Table A2-1 Exception priorities

Priority Exception
Highest 1 Reset

2 Data Abort (including data TLB miss)

3 FIQ

4 IRQ

5 Imprecise Abort (external abort) - ARMv6

6 Prefetch Abort (including prefetch TLB miss)
Lowest 7 Undefined instruction

SWI

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-25

Programmers’ Model

Undefined instruction and software interrupt cannot occur at the same time, because they each correspond
to particular (non-overlapping) decodings of the current instruction. Both must be lower priority than
Prefetch Abort, because a Prefetch Abort indicates that no valid instruction was fetched.

The priority of a Data Abort exception is higher than FIQ, which ensures that the Data Abort handler is
entered before the FIQ handler is entered (so that the Data Abort is resolved after the FIQ handler has
completed).

A2.6.11 High vectors

High vectors were introduced into some implementations of ARMv4 and are required in ARMv6
implementations. High vectors allow the exception vector locations to be moved from their normal address
range 0x00000000-0x0000001C at the bottom of the 32-bit address space, to an alternative address range
0xFFFF0000-0xFFFFO01C near the top of the address space. These alternative locations are known as the high
vectors.

Prior to ARMVG6, it is IMPLEMENTATION DEFINED whether the high vectors are supported. When they are, a
hardware configuration input selects whether the normal vectors or the high vectors are to be used from
reset.

The ARM instruction set does not contain any instructions that can directly change whether normal or high
vectors are configured. However, if the standard System Control coprocessor is attached to an ARM
processor that supports the high vectors, bit[13] of coprocessor 15 register 1 can be used to switch between
using the normal vectors and the high vectors (see Register 1: Control registers on page B3-12).

A2.6.12 Vectored interrupt support

Historically, the IRQ and FIQ exception vectors are affected by whether high vectors are enabled, and are
otherwise fixed. The result is that interrupt handlers typically have to start with an instruction sequence to
determine the cause of the interrupt and branch to a routine to handle it. Support of vectored interrupts
allows an interrupt controller to prioritize interrupts, and provide the required interrupt handler address
directly to the core. The vectored interrupt behavior is explicitly enabled by the setting of a bit, the VE bit,
in the system coprocessor CP15 register 1. See Register 1: Control registers on page B3-12. For backwards
compatibility, the vectored interrupt mechanism is disabled on reset. The details of the hardware to support
vectored interrupts is IMPLEMENTATION DEFINED.

A vectored interrupt controller (VIC) can reduce effective interrupt latency considerably, by eliminating the
need for an interrupt handler to identify the source of an interrupt and acknowledge it before re-enabling the
interrupts. Furthermore, if the VIC and core implement an appropriate handshake as the interrupt handler
routine is entered, the VIC can automatically mask out the interrupt source associated with that handler and
any lower priority sources. This allows the interrupts concerned to be re-enabled by the processor core as
soon as their return information (that is, R14 and SPSR values) have been saved, reducing the period during
which higher priority interrupts are disabled.

A2-26 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

A2.6.13 Low interrupt latency configuration

The FI bit (bit[21]) in the system control register (CP15 register 1) enables the interrupt latency
configuration logic in an implementation. See Register 1: Control registers on page B3-12. The purpose of
this configuration is to reduce the interrupt latency of the processor. The exact mechanisms that are used to
perform this are IMPLEMENTATION DEFINED.

In order to ensure that a change between normal and low interrupt latency configurations is synchronized
correctly, the FI bit must only be changed in IMPLEMENTATION DEFINED circumstances. It is recommended
that software systems should only change the FI bit shortly after reset, while interrupts are disabled.

When interrupt latency is reduced, this may result in reduced performance overall. Examples of the
mechanisms which may be used are disabling Hit-Under-Miss functionality within a core, and the
abandoning of restartable external accesses, allowing the core to react to a pending interrupt faster than
would otherwise be the case. Low interrupt latency configuration may have IMPLEMENTATION DEFINED
effects in the memory system or elsewhere outside the processor core. It is legal for the interrupt to be seen
as being taken before a store to a restartable memory location, but for the memory to have been updated
when in low interrupt latency configuration.

In low interrupt latency configuration, software must only use multi-word load/store instructions in ways
that are fully restartable. This allows (but does not require) implementations to make multi-word
instructions interruptible when in low interrupt latency configuration. The multi-access instructions to
which this rule currently applies are:

ARM LDC, all forms of LDM, LDRD, STC, all forms of STM, STRD

Thumb LDMIA, PUSH, POP, STMIA

Note
If the instruction is interrupted before it is complete, the result may be that one or more of the words are
accessed twice. I[dempotent memory (multiple reads or writes of the same information exhibit identical
system results) is a requirement of system correctness.

In ARMv6, memory with the normal attribute is guaranteed to behave this way, however, memory marked
as Device or Strongly Ordered is not (for example, a FIFO). It is IMPLEMENTATION DEFINED whether
multi-word accesses are supported for Device and Strongly Ordered memory types in the low interrupt
latency configuration.

A similar situation exists with regard to multi-word load/store instructions that access memory locations that
can abort in a recoverable way, since an abort on one of the words accessed may cause a previously-accessed
word to be accessed twice — once before the abort, and a second time after the abort handler has returned.
The requirement in this case is either that all side-effects are idempotent, or that the abort must either occur
on the first word accessed or not at all.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-27

Programmers’ Model

A2.6.14 New instructions to improve exception handling

ARMV6 adds an instruction to simplify changes of processor mode and the disabling and enabling of
interrupts. New instructions are also added to reduce the processing cost of handling exceptions in a
different mode to the exception entry mode, by removing any need to use the original mode’s stack. Two
examples are:

. IRQ routines may wish to execute in System or Supervisor mode, so that they can both re-enable
IRQs and use BL instructions. This is not possible in IRQ mode, because a nested IRQ could corrupt
the BL’ s return link at any time. Using the new instructions, the system can store the return state (R14
link register and SPSR_irq) to the System/User or Supervisor mode stack, switch to System or
Supervisor mode and re-enable IRQs efficiently, without making any use of R13_irq or the IRQ stack.

. FIQ mode is designed for efficient use by a single owner, using R8_fiq — R13_fiq as global variables.
In addition, unlike IRQs, FIQs are not disabled by other exceptions (apart from reset), making them
the preferred type for real time interrupts, when other exceptions are being used routinely, such as
virtual memory or instruction emulation. IRQs may be disabled for unacceptably long periods of time
while these needs are being serviced.

However, if more than one real-time interrupt source is required, there is a conflict of interest. The

new mechanism allows multiple FIQ sources and minimizes the period with FIQs disabled, greatly
reducing the interrupt latency penalty. The FIQ mode registers can be allocated to the highest priority
FIQ as a single owner.

SRS - Store Return State

This instruction stores R14_<current_mode> and SPSR_<current_mode> to sequential addresses, using the
banked version of R13 for a specified mode to supply the base address (and to be written back to if base
register writeback is specified). This allows an exception handler to store its return state on a stack other
than the one automatically selected by its exception entry sequence.

The addressing mode used is a version of ARM addressing mode 4 (see Addressing Mode 4 - Load and Store
Multiple on page A5-41), modified so as to assume a {R14,SPSR} register list rather than using a list
specified by a bit mask in the instruction. This allows the SRS instruction to access stacks in a manner
compatible with the normal use of STM instructions for stack accesses. See SRS on page A4-174 for the
instruction details.

RFE — Return From Exception

This instruction loads the PC and CPSR from sequential addresses. This is used to return from an exception
which has had its return state saved using the SRS instruction, and again uses a version of ARM addressing
mode 4, modified this time to assume a {PC,CPSR} register list. See RFE on page A4-113 for the
instruction details.

A2-28 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

CPS - Change Processor State

This instruction provides new values for the CPSR interrupt masks, mode bits, or both, and is designed to
shorten and speed up the read/modify/write instruction sequence used in earlier architecture variants to
perform such tasks. Together with the SRS instruction, it allows an exception handler to save its return
information on the stack of another mode and then switch to that other mode, without modifying the stack
belonging to the original mode or any registers other than the stack pointer of the new mode.

The instruction also streamlines interrupt mask handling and mode switches in other code, and in particular
allows short, efficient, atomic code sequences in a uniprocessor system by disabling interrupts at their start
and re-enabling interrupts at their end. See CPS on page A4-29 for the instruction details.

A CPS Thumb instruction that allows mask updates within the current mode is also provided, see section CPS
on page A7-39.

Note

The Thumb instruction cannot change the mode due to instruction space usage constraints.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-29

Programmers’ Model

A2.7

A2.7.1

Endian support

This section discusses memory and memory-mapped I/O, with regard to the assumptions ARM processor
implementations make about endianness.

ARMV6 introduces several architectural extensions to support mixed-endian access in hardware:

. Byte reverse instructions that operate on general-purpose register contents to support word, and
signed and unsigned halfword data quantities.

. Separate instruction and data endianness, with instructions fixed as little-endian format, naturally
aligned, but with legacy support for 32-bit word-invariant binary images/ROM.

. A PSR Endian control flag, the E bit, which dictates the byte order used for the entire load and store
instruction space when data is loaded into, and stored back out of the register file. In previous
architectures this PSR bit was specified as 0 and is never set in legacy code written to conform to
architectures prior to ARMvo6.

. ARM and Thumb instructions to set and clear the E bit explicitly.

. A byte-invariant addressing scheme to support fine-grain big-endian and little-endian shared data
structures, to conform to the IEEE Standard for Shared-Data Formats Optimized for Scalable
Coherent Interface (SCI) Processors, IEEE Std 1596.5-1993 (ISBN 1-55937-354-7, IEEE).

. Bus interface endianness is IMPLEMENTATION DEFINED. However, it must support byte lane controls
for unaligned word and halfword data access.

Address space

The ARM architecture uses a single, flat address space of 232 8-bit bytes. Byte addresses are treated as
unsigned numbers, running from 0 to 232 - 1.

This address space is regarded as consisting of 230 32-bit words, each of whose addresses is word-aligned,
which means that the address is divisible by 4. The word whose word-aligned address is A consists of the
four bytes with addresses A, A+1, A+2 and A+3.

In ARMv4 and above, the address space is also regarded as consisting of 23! 16-bit halfwords, each of whose
addresses is halfword-aligned (divisible by 2). The halfword whose halfword-aligned address is A consists
of the two bytes with addresses A and A+1.

In ARMVSE and above, the address space supports 64-bit doubleword operations. Doubleword operations
can be considered as two-word load/store operations, each word addressed as follows:

. A, A+1, A+2, and A+3 for the first word
o A+4, A+5, A+6, and A+7 for the second word.

Prior to ARMv6, word-aligned doubleword operations are UNPREDICTABLE with doubleword-aligned
addresses always supported. ARMv6 mandates support of both modulo4 and modulo8 alignment of
doublewords, and introduces support for unaligned word and halfword data accesses, all controlled through
the standard System Control coprocessor.

A2-30

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A2.7.2

Programmers’ Model

Jazelle state (see The T and J bits on page A2-15) introduced with ARM architecture variant v5J supports
byte addressing.

Address calculations are normally performed using ordinary integer instructions. This means that they
normally wrap around if they overflow or underflow the address space. This means that the result of the
calculation is reduced modulo 232,

Normal sequential execution of instructions effectively calculates:
(address_of_current_instruction) + 4

after each instruction to determine which instruction to execute next. If this calculation overflows the top of
the address space, the result is UNPREDICTABLE. In other words, programs should not rely on sequential
execution of the instruction at address 0x00000000 after the instruction at address OxFFFFFFFC.

The above only applies to instructions that are executed, including those which fail their condition code
check. Most ARM implementations prefetch instructions ahead of the currently-executing instruction. If
this prefetching overflows the top of the address space, it does not cause the implementation's behavior to
become UNPREDICTABLE until and unless the prefetched instructions are actually executed.

LDC, LDM, LDRD, POP, PUSH, STC, STRD, and STM instructions access a sequence of words at increasing memory
addresses, effectively incrementing a memory address by 4 for each load or store. If this calculation
overflows the top of the address space, the result is UNPREDICTABLE. In other words, programs should not
use these instructions in such a way that they access the word at address 0x00000000 sequentially after the
word at address 0xFFFFFFFC.

Any unaligned load or store whose calculated address is such that it would access the byte at OxFFFFFFFF and
the byte at address 0x00000000 as part of the instruction is UNPREDICTABLE.
Endianness - an overview

The rules in Address space on page A2-30 require that for a word-aligned address A:

. the word at address A consists of the bytes at addresses A, A+1, A+2 and A+3

. the halfword at address A consists of the bytes at addresses A and A+1

. the halfword at address A+2 consists of the bytes at addresses A+2 and A+3.

. the word at address A therefore consists of the halfwords at addresses A and A+2.

However, this does not totally specify the mappings between words, halfwords, and bytes.

A memory system uses one of the two following mapping schemes. This choice is known as the endianness
of the memory system.

In a little-endian memory system:

. a byte or halfword at a word-aligned address is the least significant byte or halfword within the word
at that address

. a byte at a halfword-aligned address is the least significant byte within the halfword at that address.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-31

Programmers’ Model

In a big-endian memory system:

. a byte or halfword at a word-aligned address is the most significant byte or halfword within the word
at that address

. a byte at a halfword-aligned address is the most significant byte within the halfword at that address.

For a word-aligned address A, Table A2-2 and Table A2-3 show how the word at address A, the halfwords
at addresses A and A+2, and the bytes at addresses A, A+1, A+2 and A+3 map on to each other for each

endianness.

Table A2-2 Big-endian memory system

31 24 23 16 15 8 7 0
Word at Address A

Halfword at Address A Halfword at Address A+2
Byte at Address A Byte at Address A+1 Byte at Address A+2 Byte at Address A+3

Table A2-3 Little-endian memory system

31 24 23 16 15 8 7 0
Word at Address A

Halfword at Address A+2 Halfword at Address A
Byte at Address A+3 Byte at Address A+2 Byte at Address A+1 Byte at Address A

On memory systems wider than 32 bits, the ARM architecture has traditionally supported a word-invariant
memory model, meaning that a word aligned address will fetch the same data in both big endian and little
endian systems. This is illustrated for a 64-bit data path in Table A2-4 and Table A2-5 on page A2-33.

Table A2-4 Big-endian word invariant case

63 32 31 0
Word at Address A+4 Word at Address A
Halfword at Halfword at Halfword at Halfword at
Address A+4 Address A+6 Address A Address A+2
A2-32 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

Table A2-5 Little-endian word invariant case

63 32 31 0
Word at Address A+4 Word at Address A
Halfword at Halfword at Halfword at Halfword at
Address A+6 Address A+4 Address A+2 Address A

New provisions in ARMv6

ARMV6 has introduced new configurations known as mixed endian support. These use a byte-invariant
address model, affecting the order that bytes are transferred to and from ARM registers. Byte invariance
means that the address of a byte in memory is the same irrespective of whether that byte is being accessed
in a big endian or little endian manner.

Byte, halfword, and word accesses access the same one, two or four bytes in memory for both big and little
endian configuration. Double word and multiple word accesses in the ARM architecture are treated as a
series of word accesses from incrementing word addresses, and hence each word also returns the same bytes
of information in these cases too.

Note

When an implementation is configured in mixed endian mode, this only affects data accesses and how they
are loaded/stored to/from the register file. Instruction fetches always assume a little endian byte order model.

. When configured for big endian load/store, the lowest address provides the most significant byte of
the requested word or halfword. For LDRD/STRD this is the most significant byte of the first word
accessed.

. When configured for little endian load/store, the lowest address provides the least significant byte of
the requested word or halfword. For LDRD/STRD this is the least significant byte of the first word
accessed.

The convention adopted in this book is to identify the different endian models as follows:

. the word invariant big endian model is known as BE-32
. the byte invariant big endian model is referred to as BE-8
. little endian data is identical in both models and referred to as LE.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-33

Programmers’ Model

A2.7.3 Endian configuration and control

Prior to ARMv6, a single bit (B bit) provides endian control. It is IMPLEMENTATION DEFINED whether
implementations of ARMvS5 and below support little-endian memory systems, big-endian memory systems,
or both. If a standard System Control coprocessor is attached to an ARM implementation supporting the B
bit, this configuration input can be changed by writing to bit[7] of register 1 of the System Control
coprocessor (see Register 1: Control registers on page B3-12). An implementation may preset the B bit on
reset. If an ARM processor configures for little-endian operation on reset, and it is attached to a big-endian
memory system, one of the first things the reset handler must do is switch the configured endianness to
big-endian, using an instruction sequence like:

MRC pl5, 0, r@, cl, co ; r@ := CP15 register 1
ORR ro, ro, #0x80 ; Set bit[7] in r@
MCR pl5, 0, r@, cl, c0 ; CP15 register 1 := r@

This must be done before there is any possibility of a byte or halfword data access occurring, or instruction
execution in Thumb or Jazelle state.

ARMVv6 supports big-endian, little-endian, and byte-invariant hybrid systems. LE and BE-8 formats must
be supported. Support of BE-32 is IMPLEMENTATION DEFINED.

Features are provided in the System Control coprocessor and CPSR/SPSR to support hybrid operation. The
System Control Coprocessor register (CP15 register 1) and CPSR bits used are:

. Bit[1] - A bit - used to enable alignment checking. Always reset to zero (alignment checking OFF).
. Bit[7] - B bit - OPTIONAL, retained for backwards compatibility

. Bit[22] - the U bit - enables ARMv6 unaligned data support, and used with Bit[1] - the A bit - to
determine alignment checking behavior.

. Bit [25] - the EE bit - Exception Endian bit.
o CPSR/SPSR][9] - the E bit - load/store endian control.

The behavior of the memory system with respect to the U and A bits is summarized in Table A2-6.

Table A2-6
U A Description
0 0 Legacy (32-bit word invariant only)
0 1 Modulo 8 alignment checking: LDRD/STRD (8 and 32-bit invariant
memory models)
1 0 Unaligned access support (8-bit byte invariant data accesses only)
1 1 Modulo 4 alignment checking: LDRD/STRD (8-bit and 32-bit invariant

memory models)

A2-34 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

The EE-bit value is used to overwrite the CPSR_E bit on exception entry and for page table lookups. These
are asynchronous events with respect to normal control of the CPSR E bit.

A 2-bit configuration (CFGENDI1:0]) replaces the BigEndinit configuration pin to provide hardware
system configuration on reset. CFGEND][1] maps to the U bit, while CFGENDI0] sets either the B bit or EE
bit and CPSR_E on reset.

Table A2-7 defines the CFGEND[1:0] encoding and associated configurations.

Table A2-7

CFGENDI[1:0] Coprocessor 15 System Control Register (register 1) CPSR/SPSR

EE bit[25] U bit[22] A bit[1] B bit[7] E bit
00 0 0 0 0 0
012 0 0 0 1 0
10 0 1 0 0 0
11 1 1 0 0 1

a. This configuration is RESERVED in implementations which do not support BE-32. In this case, the B bit
must read as zero (RAZ).

Where an implementation does not include configuration pins, the U bit and A bit shall clear on reset.

The usage model for the U bit and A bit with respect to the B bit and E bit is summarized in Table A2-8.
Where BE-32 is not supported, the B bit must read as zero, and all entries indicated by B==1 are RESERVED.
Interaction of these control bits with data alignment is discussed in Unaligned access support on

page A2-38.
Table A2-8 Endian and Alignment Control Bit Usage Summary
U A B E fines Endianness Behavier Description
o 0 0 O LE LE Rotated LDR Legacy LE / programmed BE
configuration
0O 0 0 1 - - - RESERVED (no E bit in legacy code)
o 0 1 0 BE-32 BE-32 Rotated LDR Legacy BE (32-bit word-invariant)
0O 0 1 1 - - - RESERVED (no E bit in legacy code)
o 1 0 O LE LE Data Abort modulo 8 LDRD/STRD doubleword

alignment checking. LE Data

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-35

Programmers’ Model

Table A2-8 Endian and Alignment Control Bit Usage Summary (continued)

Instruction Data Unaligned A
u A B E Endianness Endianness Behavior Description
0 0 1 LE BE-8 Data Abort modulo 8 LDRD/STRD doubleword
alignment checking. BE Data
0 1 0 BE-32 BE-32 Data Abort modulo 8 LDRD/STRD doubleword
alignment checking, legacy BE
0 1 1 - - - RESERVED
1 0 0 O LE LE Unaligned LE instructions, LE mixed-endian data,
unaligned access permitted
1 0o 0 1 LE BE-8 Unaligned LE instructions, BE mixed-endian data,
unaligned access permitted
1 0 1 x - - - RESERVED
1 0 0 LE LE Data Abort modulo 4 alignment checking, LE Data
1 0 1 LE BE-8 Data Abort modulo 4 alignment checking, BE data
1 1 0 BE-32 BE-32 Data Abort modulo 4 alignment checking, legacy BE
1 1 1 - - - RESERVED
BE-32 and BE-8 are as defined in Endianness - an overview on page A2-31. Data aborts cause an alignment
error to be reported in the Fault Status Register in the system coprocessor.
Note
The U, A and B bits are System Control Coprocessor bits, while the E bit is a CPSR/SPSR flag.
The behavior of SETEND instructions (or any other instruction that modifies the CPSR) is UNPREDICTABLE
when setting the E bit would result in a RESERVED state.
A2.7.4 Instructions to change CPSR E bit
ARM and Thumb instructions are provided to set and clear the E bit efficiently:
SETEND BE Set the CPSR E bit.
SETEND LE Reset the CPSR E bit.
These are unconditional instructions. See ARM SETEND on page A4-129 and Thumb SETEND on
page A7-95.
A2-36 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

A2.7.5 Instructions to reverse bytes in a general-purpose register

When an application or device driver has to interface to memory-mapped peripheral registers or
shared-memory DMA structures that are not the same endianness as that of the internal data structures, or
the endianness of the Operating System, an efficient way of being able to explicitly transform the endianness
of the data is required.

ARMv6 ARM and Thumb instruction sets provide this functionality:

. Reverse word (four bytes) register, for transforming big and little-endian 32-bit representations. See
ARM REV on page A4-109 and Thumb REV on page A7-88.

. Reverse halfword and sign-extend, for transforming signed 16-bit representations. See ARM REVSH
on page A4-111 and Thumb REVSH on page A7-90.

. Reverse packed halfwords in a register for transforming big- and little-endian 16-bit representations.
See ARM REV16 on page A4-110 and Thumb REV16 on page A7-89.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-37

Programmers’ Model

A2.8

A2.8.1

Unaligned access support

The ARM architecture traditionally expects all memory accesses to be suitably aligned. In particular, the
address used for a halfword access should normally be halfword-aligned, the address used for a word access
should normally be word-aligned.

Prior to ARMv6, doubleword (LDRD/STRD) accesses to memory, where the address is not doubleword-aligned,
are UNPREDICTABLE. Also, data accesses to non-aligned word and halfword data are treated as aligned from
the memory interface perspective. That is:

o the address is treated as truncated, with address bits[1:0] treated as zero for word accesses, and
address bit[0] treated as zero for halfword accesses.

. load single word ARM instructions are architecturally defined to rotate right the word-aligned data
transferred by a non word-aligned address one, two or three bytes depending on the value of the two
least significant address bits.

. alignment checking is defined for implementations supporting a System Control coprocessor using
the A bitin CP15 register 1. When this bit is set, a Data Abort indicating an alignment fault is reported
for unaligned accesses.

ARMV6 introduces unaligned word and halfword load and store data access support. When this is enabled,
the processor uses one or more memory accesses to generate the required transfer of adjacent bytes
transparently to the programmer, apart from a potential access time penalty where the transaction crosses an
IMPLEMENTATION DEFINED cache-line, bus-width or page boundary condition. Doubleword accesses must
be word-aligned in this configuration.

Unaligned instruction fetches

All instruction fetches must be aligned. Specifically they must be:
. word aligned in ARM state
. halfword aligned in Thumb state.

Writing an unaligned address to R15 is UNPREDICTABLE, except in the specific cases where the instructions
are associated with a Thumb to ARM state transition, bit[1] providing a valid address bit on transition to
Thumb state, and bit[0] indicating whether a transition needs to occur. The BX instruction in ARM state (see
BX on page A4-20) and POP instruction in Thumb state (see POP on page A7-82) are examples of
instructions providing state transition support.

The general rules for reading and writing the program counter are defined in Register 15 and the program
counter on page A2-9.

A2-38

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

A2.8.2 Unaligned data access in ARMv6 systems

ARMV6 uses the U bit (CP15 register 1 bit[22]) and A bit (CP15 register 1 bit[1]), to provide a configuration
supporting the following unaligned memory accesses:

. Unaligned halfword accesses for LDRH, LDRSH and STRH.
. Unaligned word accesses for LDR, LDRT, STR and STRT.

The U bit and A bit are also used to configure endian support as described in Endian configuration and
control on page A2-34. All other multi-byte load and store accesses shall be word aligned.

Instructions must always be aligned (and in little endian format):
. ARM instructions must be word-aligned
. Thumb instructions must be halfword-aligned.

In addition, an ARMv6 system shall reset to the CFGEND[1:0] condition as described in Table A2-7 on
page A2-35.

For ARMv6, Table A2-10 on page A2-40 defines when an alignment fault must occur for an access, and
when the behavior of an access is architecturally UNPREDICTABLE. It also gives details of precisely which
memory locations are returned for valid accesses.

The access type descriptions used in this section are determined from the load/store instructions as described
in Table A2-9:

Table A2-9
¢;,:::ss ARM instructions Thumb instructions
Byte LDRB LDRBT LDRSB STRB STRBT SWPB (either access) LDRB LDRSB STRB
Halfword LDRH LDRSH STRH LDRH LDRSH STRH
WLoad LDR LDRT SWP (load access, if U == 0) LDR
WStore STR STRT SWP (store access, if U == 0) STR
WSync LDREX STREX SWP (either access, if U == 1) -
Two-word LDRD STRD -
Multi-word LDC LDM RFE SRS STC STM LDMIA POP PUSH STMIA
The following terminology is used to describe the memory locations accessed:
Byte[X] Means the byte whose address is X in the current endianness model. The correspondence

between the endianness models is that Byte[A] in the LE endianness model, Byte[A] in the
BE-8 endianness model, and Byte[A EOR 3] in the BE-32 endianness model are the same
actual byte of memory.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-39

Programmers’ Model

Halfword[X] Means the halfword consisting of the bytes whose addresses are X and X+1 in the current

Word[X]

Align[X]

endianness model, combined to form a halfword in little-endian order in the LE endianness
model or in big-endian order in the BE-8 or BE-32 endianness model.

Means the word consisting of the bytes whose addresses are X, X+1, X+2, and X+3 in the
current endianness model, combined to form a word in little-endian order in the LE
endianness model or in big-endian order in the BE-8 or BE-32 endianness model.

Note

It is a consequence of these definitions that if X is word-aligned, Word[X] consists of the
same four bytes of actual memory in the same order in the LE and BE-32 endianness
models.

Means (X AND OxFFFFFFFC) - that is, X with its least significant two bits forced to zero to make
it word-aligned.

Note

There is no difference between Addr and Align(Addr) on lines for which Addr[1:0] == 0b00
anyway. This can be exploited by implementations to simplify the control of when the least
significant bits are forced to zero.

For the Two-word and Multi-word access types, the Memory accessed column only specifies the lowest
word accessed. Subsequent words have addresses constructed by successively incrementing the address of
the lowest word by 4, and are constructed using the same endianness model as the lowest word.

Table A2-10 Data Access Behavior in ARMv6 Systems

U Addr[2:0] 2€®SS popavior Memory Notes
Types accessed

0 LEGACY, NO
ALIGNMENT FAULTING

0 XXX Byte Normal Byte[Addr] -

0 xx0 Halfword Normal Halfword[Addr] -

0 xx1 Halfword UNPREDICTABLE - -

0 XXX WLoad Normal Word[Align(Addr)] Loaded data rotated right by
8 * Addr[1:0] bits

0 XXX WStore Normal Word[Align(Addr)] Operation unaffected by
Addr[1:0]

0 x00 WSync Normal Word[Addr] -

A2-40 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

Table A2-10 Data Access Behavior in ARMv6 Systems (continued)

U A Addr2:0] ACCeSS Benavior Memory Notes
Types accessed
0 0 =xxl,xIx WSync UNPREDICTABLE - -
0 0 XXX Multi-word Normal Word[Align(Addr)] Operation unaffected by
Addr[1:0]
0 0 000 Two-word Normal Word[Addr] -
0 0 xxl,xIx, Two-word UNPREDICTABLE - -
1xx
1 0 NEW ARMv6
UNALIGNED SUPPORT
1 0 xxx Byte Normal Byte[Addr] -
1 0 XXX Halfword Normal Halfword[Addr] -
1 0 xxx WLoad Normal Word[Addr] -
WStore
1 0 x00 WSync Normal Word[Addr] -
Multi-word
Two-word
1 0 =xxI,xlIx WSync Alignment Fault - -
Multi-word
Two-word
x 1 FULL ALIGNMENT
FAULTING
x 1 xxx Byte Normal Byte[Addr] -
X 1 xx0 Halfword Normal Halfword[Addr] -
x 1 xx1 Halfword Alignment Fault - -
X 1 x00 WLoad Normal Word[Addr] -
WStore
WSync
Multi-word
X 1 xx1, x1x WLoad Alignment Fault - -
WStore
WSync
Multi-word
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-41

Programmers’ Model

Table A2-10 Data Access Behavior in ARMv6 Systems (continued)

Access Memory

U A Addr[2:0] Behavior Notes
Types accessed

X 000 Two-word Normal Word[Addr] -

0 100 Two-word Alignment Fault - -

1 100 Two-word Normal Word[Addr] -

X xx1, x1x Two-word Alignment Fault - -

Other reasons for unalighed accesses to be UNPREDICTABLE

The following exceptions to the behavior described in Table A2-10 on page A2-40 apply, causing the

resultant unaligned accesses to be UNPREDICTABLE:

o An LDR instruction that loads the PC, has Addr[1:0] !=0b00, and is specified in the table as having
Normal behavior instead has UNPREDICTABLE behavior.

Note
The reason this applies only to LDR is that most other load instructions are UNPREDICTABLE regardless
of alignment if the PC is specified as their destination register. The exceptions are LDM, RFE and Thumb
POP. If Addr[1:0] !=0b0O0 for these instructions, the effective address of the transfer has its two least
significant bits forced to 0 if A == 0 and U ==0, and otherwise the behavior specified in the table is
either UNPREDICTABLE or Alignment Fault regardless of the destination register.

o Any WLoad, WStore, WSync, Two-word or Multi-word instruction that accesses memory with the
Strongly Ordered or Device memory attribute, has Addr[1:0] != 0b00, and is specified in the table
as having Normal behavior instead has UNPREDICTABLE behavior.

. Any Halfword instruction that accesses memory with the Strongly Ordered or Device memory
attribute, has Addr[0] !=0, and is specified in the table as having Normal behavior instead has
UNPREDICTABLE behavior.

If any of these reasons applies, it overrides the behavior specified in the table.

Note

These reasons never cause Alignment Fault behavior to be overridden.

ARM implementations are not required to ensure that the low-order address bits that make an access

unaligned are cleared from the address they send to memory. They can instead send the address as calculated

by the load/store instruction unchanged to memory, and require the memory system to ignore address[0] for

a halfword access and address[1:0] for a word access.

A2-42 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

When an instruction ignores the low-order address bits that make an access unaligned, the pseudo-code in
the instruction description does not mask them out explicitly. Instead, the Memory[<address>,<size>]
function used in the pseudo-code masks them out implicitly.

ARMv6 unaligned data access restrictions
ARMYV6 has the following restrictions on unaligned data accesses:

. Accesses are not guaranteed atomic. They can be synthesized out of a series of aligned operations in
a shared memory system without guaranteeing locked transaction cycles.

. Accesses typically take a number of cycles to complete compared to a naturally aligned transfer. The
real-time implications must be carefully analyzed and key data structures might need to have their
alignment adjusted for optimum performance.

. Accesses can abort on either or both halves of an access where this occurs over a page boundary. The
Data Abort handler must handle restartable aborts carefully after an Alignment Fault Status Code is
signaled.

Therefore shared memory schemes should not rely on seeing monotonic updates of non-aligned data of
loads, stores, and swaps for data items greater than byte width.

Unaligned access operations should not be used for accessing Device memory-mapped registers. They must
also be used with care in shared memory structures that are protected by aligned semaphores or
synchronization variables.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-43

Programmers’ Model

A2.9

Synchronization primitives

Historically, support for shared memory synchronization has been with the read-locked-write operations
that swap register contents with memory; the SWP and SWPB instructions described in SWP on page A4-212
and SWPB on page A4-214. These support basic busy/free semaphore mechanisms, but not mechanisms that
require calculation to be performed on the semaphore between the read and write phases. ARMv6 provides
anew mechanism to support more comprehensive non-blocking shared-memory synchronization primitives
that scale for multiple-processor system designs.

Note

The swap and swap byte instructions are deprecated in ARMv®6. It is recommended that all software
migrates to using the new synchronization primitives.

Two instructions are introduced to the ARM instruction set:
. Load-Exclusive described in LDREX on page A4-52
. Store-Exclusive described in STREX on page A4-202.

The instructions operate in concert with an address monitor, which provides the state machine and
associated system control for memory accesses. Two different monitor models exist, depending on whether
the memory has the sharable or non-sharable memory attribute. See Shared attribute on page B2-12.
Uniprocessor systems are only required to support the non-shared memory model, allowing them to support
synchronization primitives with the minimum amount of hardware overhead. An example minimal system
is illustrated in Figure A2-2.

L2 RAM L2 Cache Bridge to L3

| I I

Routing matrix

I

Monitor

CPU 1

Figure A2-2 Example uniprocessor (non-shared) monitor

Multi-processor systems are required to implement an address monitor for each processor. It is
IMPLEMENTATION DEFINED where the monitors reside in the memory system hierarchy, whether they are
implemented as a single entity for each processor visible to all shared accesses, or as a distributed entity.
Figure A2-3 on page A2-45 illustrates a single entity approach in which the monitor supports state machines
for both the shared and non-shared cases. Only the shared attribute case needs to snoop.

A2-44

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

L2 RAM L2 Cache Bridge to L3

| ! I

Routing matrix

Monitor : : Monitor

CPU 1 CPU 2

Figure A2-3 Write snoop monitor approach

Figure A2-4 illustrates a distributed model with local monitors residing in the processor blocks, and global
monitors distributed across the targets of interest.

Shared Non- L2 Cache Bridge to L3
L2 RAM shared
L2 RAM
Mon 2 Mon 2 Mon 2
Mon 1 Mon 1 Mon 1

b I I

Routing matrix

I |

Local Local
Monitor Monitor
CPU 1 CPU 2

Figure A2-4 Monitor-at-target approach

A2.9.1 Exclusive access instructions: non-shared memory

For memory regions that do not have the Shared TLB attribute, the exclusive-access instructions rely on the
ability to tag the fact that an exclusive load has been executed. Any non-aborted attempt by the processor
that executed the exclusive load to modify any address using an exclusive store is guaranteed to clear this

tag.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-45

Programmers’ Model

Note

In non-shared memory, it is UNPREDICTABLE whether a store to a tagged physical address will cause a tag
to be cleared when that store is by a processor other than the one that caused the physical address to be
tagged.

Load-Exclusive performs a load from memory, and causes the executing processor to tag the fact that it has
an outstanding tagged physical address to non-sharable memory; the monitor transitions state to Exclusive
Access.

Store-Exclusive performs a conditional store to memory, the store only taking place if the local monitor of
the executing processor is in the Exclusive Access state. A status value of Ob0 is returned to a register, and
the executing processor's monitor transitions to the Open Access state. If the store is prevented, a value of
Obl1 is returned in the instruction defined register.

A write to a physical address not covered by the local monitor by that processor using any instruction other
than a Store-Exclusive will not affect the state of the local monitor. It is IMPLEMENTATION DEFINED whether
a write (other than with a Store-Exclusive) to the physical address which is covered by the monitor will
affect the state of the local monitor.

If a processor performs a Store-Exclusive to any address in non-shared memory other than the last one from
which it has performed a Load-Exclusive, and the monitor is in the exclusive state, it is IMPLEMENTATION
DEFINED whether the store will succeed in this case. This mechanism is used on a context switch (see section
Context switch support on page A2-48). It should be treated as a software programming error in all other
cases.

The state machine for the associated data monitor is illustrated in Figure A2-5.

Tagged_address <= x[31:a] Tagged_address <= x[31:a]
STREX(x),
/ STR(x) LDREX(x) LDREX(x)
Rm <= 1'b1; L | | l
Do not update memory Open Access Exclusive [+—
Access [

Rm <= 1'b0; update memory <— STREX(Tagged_address) S TR(!Tagged_address)
(Rm <= 10 AND update memory}/ STREX(!Tagged_address) STR(Tagged_address)
OR

STR(Tagged_address)
(Rm <= 1’b1 AND do not update memory)

The arcs in italics show allowable alternative (IMPLEMENTATION DEFINED) options.
The Tagged_address value of ‘a’ is IMPLEMENTATION DEFINED to a value between 2 and 7 inclusive.

Figure A2-5 State diagram - local monitor

A2-46 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A2.9.2

Programmers’ Model

Note
The IMPLEMENTATION DEFINED options for the local monitor are consistent with the local monitor being
constructed in a manner that it does not hold any physical address, but instead treats all accesses as matching
the address of the previous LDREX.

The behavior illustrated is for the local address monitor associated with the processor issuing the LDREX,
STREX and STR instructions. The transition from Exclusive Access to Open Access is UNPREDICTABLE when
the STR or STREX is from a different processor. Transactions from other processors need not be visible to this
monitor.

Exclusive access instructions: shared memory

For memory regions that have the Shared TLB attribute, the exclusive-access instructions rely on the ability
of a global monitor to tag a physical address as exclusive-access for a particular processor. This tag will later
be used to determine whether an exclusive store to that address should occur. Any non-aborted attempt to
modify that address by any processor is guaranteed to clear this tag.

A global monitor can reside in a processor block as illustrated in Figure A2-3 on page A2-45, or as a
secondary monitor at the memory interface, as shown in Figure A2-4 on page A2-45. The functionality of
the global and local monitors can be combined into a single monitor in implementations.

Load-Exclusive from shared memory performs a load from memory, and causes the physical address of the
access to be tagged as exclusive-access for the requesting processor. This also causes any other physical
address that has been tagged by the requesting processor to no longer be tagged as exclusive access; only a
single outstanding exclusive access to sharable memory per processor is supported.

Store-Exclusive performs a conditional store to memory. The store is only guaranteed to take place if the
physical address is tagged as exclusive-access for the requesting processor. If no address is tagged as
exclusive-access, the store will not succeed. If a different physical address is tagged as exclusive-access for
the requesting processor, it is IMPLEMENTATION DEFINED whether the store will succeed or not. A status
value of 0b0 is returned to a register to acknowledge a successful store, otherwise a value of Ob1 is returned.
In the case where the physical address is tagged as exclusive-access for the requesting processor, the state
of the exclusive monitor transitions to the Open Access state, and if the monitor was originally in the Open
Access state, it remains in this state. Otherwise, it is IMPLEMENTATION DEFINED whether the monitor
remains in the Exclusive Access state or transitions to the Open Access state.

Every processor (or independent DMA agent) in a shared memory system requires its own address monitor.
The state machine for the global address monitor associated with a processor (n) in a multiprocessing
environment interacts with all the memory accesses visible to it:

. transactions generated by the associated processor (n)

. transactions associated with other processors in the shared memory system (!n).

The behavior is illustrated in Figure A2-6 on page A2-48.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-47

Programmers’ Model

Rm <= 1'b1; _ . _ .
Do not upda{g memory - §¥§Fxxr8(n) Tagged_address <= x[31:a] Tagged_address <= x[31:a]

LDREX(x,!n), / /

STREX(x,!n),

STR(x,!n) LDREX(x,n) LDREX(x,n) (RmA7V=D1 b1
| l do not update memory)

Open Access Exglcuessl,\ée o (Rm <= 1'b0
AND

T | update memory)

(Rm <= 1°b0 AND update memory) STR(!Tagged_address,n),

STREX(Tagged_address,!n)*, STR(Tagged address.n
STR(Tagged_address,!n) STRl(Exgg'agﬁed_addreés,n),
) STREX(Tagged_address,n), STREX(Tagged_address,n),
(Rm <= 1'b1 AND do not update memory) . STREX(!Tagged_address,n), STR(!Tagged_address,!n),
OR STR(Tagged_address,n) STREX(ITagged_address,!n)

(Rm <= 1'b0 AND update memory) (Rm <= 1'b0
AND

* STREX(Tagged_Address,!n) only clears monitor if the STREX updates memory update memory)
The arcs in italics show allowable alternative (IMPLEMENTATION DEFINED) options.
The Tagged_address value of ‘a‘ is IMPLEMENTATION DEFINED to a value between 2 and 7 inclusive.

Figure A2-6 State diagram - global monitor

Note

Whether a STREX successfully updates memory or not is dependent on a tag address match with its associated
global monitor, hence the (!n) entries are only shown with respect to how they influence state transitions of
the state machine. Similarly, an LDREX can only update the tag of its associated global monitor.

A2.9.3 Context switch support

On a context switch, it is necessary to ensure that the local monitor is in the Open Access state after a context
switch. This requires execution of a dummy STREX to an address in memory allocated for this purpose.

For reasons of performance, it is recommended that the store-exclusive instruction be within a few
instructions of the load-exclusive instruction. This minimizes the opportunity for context switch overhead
or multiprocessor access conflicts causing an exclusive store to fail, and requiring the load/store sequence
to be replayed.

A2-48 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

A2.9.4 Summary of operation

The following pseudo-functions can be used to describe the exclusive access operations:

TLB(<Rm>)

Shared(<Rm>)

ExecutingProcessor()
MarkExclusiveGlobal(<physical_address>,<processor_id>,<size>)
MarkExclusiveLocal(<physical address>,<processor_id>,size>)
IsExclusiveGlobal(<physical_address>,<processor_id>,<size>)
IsExclusiveLocal(<physical_address>,<processor_id>,<size>)
ClearExclusiveByAddress(<physical_address>,<processor_id>,<size>)
ClearExclusiveLocal(<processor_id>).

If CP15 register 1 bit[0] (Mbit) is set, TLB(<Rm>) returns the physical address corresponding to the
virtual address in Rm for the executing processor's current process ID and TLB entries. If Mbit is not
set, or the system does not implement a virtual to physical translation, it returns the value in Rm.

If CP15 register 1 bit[0] (Mbit) is set, Shared(<Rm>) returns the value of the shared memory region
attribute corresponding to the virtual address in Rm for the executing processor's current process ID
and TLB entries for the VMSA, or the PMSA region descriptors. If Mbit is not set, the value returned
is a function of the memory system behavior (see Chapter B4 Virtual Memory System Architecture
and Chapter BS Protected Memory System Architecture).

ExecutingProcessor() returns a value distinct amongst all processors in a given system,
corresponding to the processor executing the operation.

MarkExclusiveGlobal(<physical_address>,<processor_id>,<size>) records the fact that processor
<processor_id> has requested exclusive access covering at least <size> bytes from address
<physical_address>. The size of region marked as exclusive is IMPLEMENTATION DEFINED, up to a
limit of 128 bytes, and no smaller than <size>, and aligned in the address space to the size of the
region. It is UNPREDICTABLE whether this causes any previous request for exclusive access to any
other address by the same processor to be cleared.

MarkExclusiveLocal(<physical_address>,<processor_id>,<size>) records in a local record the fact
that processor <processor_id> has requested exclusive access to an address covering at least <size>
bytes from address <physical_address>. The size of the region marked as exclusive is
IMPLEMENTATION DEFINED, and can at its largest cover the whole of memory, but is no smaller than
<size>, and is aligned in the address space to the size of the region. It is IMPLEMENTATION DEFINED
whether this also performs a MarkExclusiveGlobal(<physical_address>,<processor_id>,<size>).

IsExclusiveGlobal(<physical_address>,<processor_id>,<size>) returns TRUE if the processor
<processor_id> has marked in a global record an address range as exclusive access requested which
covers at least the <size> bytes from address <physical_address>. It is IMPLEMENTATION DEFINED
whether it returns TRUE or FALSE if a global record has marked a different address as exclusive
access requested. If no address is marked in a global record as exclusive access,
IsExclusiveGlobal(<physical_address>,<processor_id>,<size>) will return FALSE.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-49

Programmers’ Model

7. IsExclusiveLocal(<physical_address>,<processor_id>,<size>) returns TRUE if the processor
<processor_id> has marked an address range as exclusive access requested which covers at least the
<size> bytes from address <physical_address>. It is IMPLEMENTATION DEFINED whether this function
returns TRUE or FALSE if the address marked as exclusive access requested does not cover all of the
<size> bytes from address <physical_address>. If no address is marked as exclusive access requested,
then this function returns FALSE. It is IMPLEMENTATION DEFINED whether this result is ANDed with
the result of an IsExclusiveGlobal(<physical_address>,<processor_id>,<size>).

8. ClearExclusiveByAddress(<physical_address>,<processor_id>,<size>) clears the global records of
all processors, other than <processor_id>, that an address region including any of the bytes between
<physical_address> and (<physical_address>+<size>-1) has had a request for an exclusive access.

It is IMPLEMENTATION DEFINED whether the equivalent global record of the processor <processor_id>
is also cleared if any of the bytes between <physical_address> and (<physical_address>+<size>-1)
have had a request for an exclusive access, or if any other address has had a request for an exclusive
access.

9. ClearExclusiveLocal(<processor_id>) clears the local record of processor <processor_id> that an
address has had a request for an exclusive access. It is IMPLEMENTATION DEFINED whether this
operation also clears the global record of processor <processor_id> that an address has had a request
for an exclusive access.

For the purpose of this definition, a processor is defined as a system component, including virtual system
components, which is capable of generating memory transactions. The processor_id is defined as a unique
identifier for a processor.

Effects on other store operations
All executed store operations gain the following functional behavior to their pseudo-code operation:
processor_id = ExecutingProcessor()
if Shared(address) then /« from ARMv6 =/
physical_address = TLB(address)
ClearExclusiveByAddress(physical_address,processor_id,size)
Load and store operation

The exclusive accesses can be described in terms of their register file usage:

o Rd: the destination register, for data on loads, status on stores
. Rm: the source data register for stores
. Rn: the memory address register for loads and stores.

A2-50 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

A pseudo-code representation is as follows.
LDREX operation:

if ConditionPassed (cond) then
processor_id = ExecutingProcessor()
Rd = Memory[Rn,4]
physical_address = TLB(Rn)
if Shared(Rn) == 1 then
MarkExcTusiveGlobal(physical_address,processor_id,4)
MarkExcTusivelLocal(physical_address,processor_id,4)

STREX operation:

if ConditionPassed(cond) then
processor_id = ExecutingProcessor()
physical_address = TLB(Rn)
if IsExclusivelocal(physical_address,processor_id,4) then
if Shared(Rn) == 1 then
if IsExclusiveGlobal(physical_address,processor_id,4) then
Memory[Rn,4] = Rm

Rd =0
ClearExclusiveByAddress(physical_address,processor_id,4)
else
Rd =1
else
Memory[Rn,4] =Rm
Rd =0
else
Rd =1

ClearExclusivelocal(processor_id)

Note

The behavior of STREX in regions of shared memory that do not support exclusives (for example, have no
exclusives monitor implemented) is UNPREDICTABLE.

For a complete definition of the instruction behavior see LDREX on page A4-52 and STREX on
page A4-202.

Usage restrictions

The LDREX and STREX instructions are designed to work in tandem. In order to support a number of different
implementations of these functions, the following notes and restrictions must be followed:

1. The exclusives are designed to support a single outstanding exclusive access for each processor
thread that is executed. The architecture makes use of this by not mandating an address or size check
as part of the IsExclusiveLocal() function. If the target address of an STREX is different from the
preceding LDREX within the same execution thread, it can lead to UNPREDICTABLE behavior. As a
result, an LDREX/STREX pair can only be relied upon to eventually succeed if they are executed with the
same address. Where a context switch or exception might result in a change of execution thread, a

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-51

Programmers’ Model

dummy STREX instruction, as described in Context switch support on page A2-48 should be executed
to avoid unwanted effects. This is the only occasion where an STREX is expected to be programmed
with a different address from the previously executed LDREX.

2. An explicit store to memory can cause the clearing of exclusive monitors associated with other
processors, therefore, performing a store between the LDREX and the STREX can result in livelock
situations. As a result, code should avoid placing an explicit store between an LDREX and an STREX
within a single code sequence.

3. Two STREX instructions executed without an intervening LDREX will also result in the second STREX
returning FALSE. As a result, it is expected that each STREX should have a preceding LDREX associated
with it within a given thread of execution, but it is not necessary that each LDREX must have a
subsequent STREX.

4. Implementations can cause apparently spurious clearing of the exclusive monitor between the LDREX
and the STREX, as a result of, for example, cache evictions. Code designed to run on such
implementations should avoid having any explicit memory transactions or cache maintenance
operations between the LDREX and STREX instructions.

5. Implementations can benefit from keeping the LDREX and STREX operations close together in a single
code sequence. This reduces the likelihood of spurious clearing of the exclusive monitor state
occurring, and as a result, a limit of 128 bytes between LDREX and STREX instructions in a single code
sequence is strongly recommended for best performance.

6. Implementations which implement coherent protocols, or have only a single master, may combine
the local and global monitors for a given processor. The IMPLEMENTATION DEFINED and
UNPREDICTABLE parts of the definitions in Summary of operation on page A2-49. are designed to
cover this behavior.

7. The architecture sets an upper limit of 128 bytes on the regions that may be marked as exclusive.
Therefore, for performance reasons, software is recommended to separate objects that will be
accessed by exclusive accesses by at least 128 bytes. This is a performance guideline rather than a
functional requirement

8. LDREX and STREX operations shall only be performed on memory supporting the Normal memory
attribute.
9. The effect of data aborts are UNPREDICTABLE on the state of monitors. It is recommended that abort

handling code performs a dummy STREX instruction to clear down the monitor state.

A2-52 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A2.10

A2.10.1

Programmers’ Model

The Jazelle Extension

The Jazelle Extension was first introduced in ARMvVSTEJ, a variant of ARMVS, and is a mandated feature
in ARMv6. The Jazelle Extension enables architectural support for hardware acceleration of opcode
execution by Java Virtual Machines (JVMs). It is designed in such a way that JVMs can be written to
automatically take advantage of any accelerated opcode execution supplied by the processor, without
relying upon it being present. In the simplest implementations, the processor does not accelerate the
execution of any opcodes, and all opcodes are executed by software routines. This is known as a trivial
implementation of the Jazelle Extension, and has minimal costs compared with not implementing the Jazelle
Extension at all. Non-trivial implementations of the Jazelle Extension will typically implement a subset of
the opcodes in hardware, choosing opcodes that can have simple hardware implementations and that
account for a large percentage of Jazelle execution time.

The required features of a non-trivial implementation are:
o provision of an additional state bit (the J bit) in the CPSR and each SPSR

o a new instruction to enter Jazelle state (BXJ)

. extension of the PC to support full 32-bit byte addressing

. changes to the exception model

. mechanisms to allow a JVM to configure the Jazelle Extension hardware to its specific needs
. mechanisms to allow OSes to regulate use of the Jazelle Extension hardware.

The required features of a trivial implementation are:

. Only ARM and Thumb execution states shall exist. The J bit may always read and write as zero.
Should the J bit update to one, execution of the following instruction is UNDEFINED.

o The BXJ instruction shall behave as a BX instruction.
. Configuration support that maintains the interface as permanently disabled.

A JVM that has been written to automatically take advantage of hardware-accelerated opcode execution is
known as an Enabled JVM (EJVM).

Subarchitectures

ARM implementations that include the Jazelle Extension expect the ARM processor’s general-purpose
registers and other resources to obey a calling convention when Jazelle state execution is entered and exited.
For example, a specific general-purpose register may be reserved for use as the pointer to the current opcode.
In order for an EJVM or associated debug support to function correctly, it must be written to comply with
the calling convention expected by the acceleration hardware at Jazelle state execution entry and exit points.

The calling convention is relied upon by an EJVM, but not in general by other system software. This limits
the cost of changing the convention to the point that it can be considered worthwhile to change it if a
sufficient technical advantage is obtained by doing so, such as a significant performance improvement in
opcode execution.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-53

Programmers’ Model

A2.10.2

Multiple conventions are known collectively as the subarchitecture of the implementation. They are not
described in this document, and must only be relied upon by EJVM implementations and debug/similar
software as described above. All other software must only rely upon the general architectural definition of
the Jazelle Extension described in this section. A particular subarchitecture is identified by reading the
Jazelle ID register described in Jazelle ID register on page A2-62.

Jazelle state

The Jazelle Extension makes use of an extra state bit (J) in the processor status registers (the CPSR and the
banked SPSRs). This is bit[24] of the registers concerned:

31 30 29 28 27 26 25 24 23 20 19 16 15 109 8 7 6 5 4 0

N|[Z|C|V|Q|Rsrvd| J | RESERVED | GEJ[3:0] RESERVED E|A|I|F|T Mode

The other bit fields are described in Program status registers on page A2-11.

Note

The placement of the J bit in the flags byte was to avoid any usage of the status or extension bytes in code
run on ARMVSTE or earlier processors. This ensures that OS code written using the deprecated CPSR,
SPSR, CPSR_all or, SPSR_all syntax for the destination of an MSR instruction only ceases to work when
features introduced in ARMv6 are used, namely the E, A and GE bit fields.

In addition, J is always O at times that an MSR instruction is executed. This ensures there are no unexpected
side-effects of existing instructions such as MSR CPSR_f, #0xF0000000, that are used to put the flags into a
known state.

The J bit is used in conjunction with the T bit to determine the execution state of the processor, as shown in
Table A2-11.

Table A2-11
J T Execution state
0 0 ARM state, executing 32-bit ARM instructions
0 1 Thumb state, executing 16-bit Thumb instructions
1 0 Jazelle state, executing variable-length Jazelle opcodes
1 1 UNDEFINED, and reserved for future expansion
The J bit is treated similarly to the T bit in the following respects:
. On exception entry, both bits are copied from the CPSR to the exception mode’s SPSR, and then

cleared in the CPSR to put the processor into the ARM state.

A2-54

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

. Data processing instructions with Rd = R15 and the S bit set cause these bits to be copied from the
SPSR to the CPSR and execution to resume in the resulting state. This ensures that these instructions
have their normal exception return functionality.

Such exception returns are expected to use the SPSR and R14 values generated by a processor
exception entry and to use the appropriate return instruction for the exception concerned, as described
in Exceptions on page A2-16. If return values are used with J == 1 and T == 0 in the SPSR value,
then the results are SUBARCHITECTURE DEFINED.

. Similarly, LDM instructions with the PC in the register list and ” specified (that is, LDM (3) instructions,
as described in LDM (3) on page A4-40) cause both bits to be copied from the SPSR to the CPSR and
execution to resume in the resulting state. These instructions are also used for exception returns, and
the considerations in the previous bullet point also apply to them.

. In privileged modes, execution of an MSR instruction that attempts to set the J or T bit of the CPSR to
1 has UNPREDICTABLE results.

. In unprivileged (User) mode, execution of an MSR instruction that attempts to set the J or T bit of the
CPSR to 1 will not modify the bit.

. Setting J == 1 and T == 1 causes similar effects to setting T == 1 on a non Thumb-aware processor.
That is, the next instruction executed will cause entry to the Undefined Instruction exception. Entry
to the exception handler will cause the processor to re-enter ARM state, and the handler can detect
that this was the cause of the exception because J and T are both set in SPSR_und.

While in Jazelle state, the processor executes opcode programs. An opcode program is defined to be an
executable object comprising one or more class files, as defined in Lindholm and Yellin, The Java Virtual
Machine Specification 2nd Edition, or derived from and functionally equivalent to one or more class files.
While in Jazelle state, the PC acts as a program counter which identifies the next JVM opcode to be
executed, where JVM opcodes are the opcodes defined in Lindholm and Yellin, or a functionally equivalent
transformed version of them.

Native methods, as described in Lindholm and Yellin, for the Jazelle Extension must use only the ARM
and/or Thumb instruction sets to specify their functionality.

An implementation of the Jazelle Extension must not be documented or promoted as performing any task
while it is in Jazelle state other than the acceleration of opcode programs in accordance with this section and
Lindholm and Yellin.

Extension of the PC to 32 bits

In order to allow the PC to point to an arbitrary opcode, all 32 bits of the PC are defined in non-trivial
implementations. Bit[0] of the PC always reads as zero when in ARM or Thumb state. Bit[1] reflects the
word-alignment, or halfword-alignment of ARM and Thumb instructions respectively. The existence of
bit[0] in the PC is only visible in ARM or Thumb state due to an exception occurring in Jazelle state, and
the exception return address is odd-byte aligned.

The main architectural implication of this is that exception handlers must ensure that they restore all 32 bits
of R15. The recommended ways to handle exception returns behave correctly.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-55

Programmers’ Model

A2.10.3 New Jazelle state entry instruction (BXJ)

An ARM instruction similar to BX is added. The BXJ instruction has a single register operand that specifies
a target execution state (ARM or Thumb) and branch target address for use if entry to Jazelle state is not
available. See BXJ on page A4-21 for more details.

Compliant Java execution involves the EJVM using the BXJ instruction, the usage model of the standard
ARM registers, and the Jazelle Extension Control and Configuration registers described in Configuration
and control on page A2-62.

Executing BXJ with Jazelle Extension enabled

Executing a BXJ instruction when the JE bit is 1 gives the Jazelle Extension hardware an opportunity to enter
Jazelle state and start executing opcodes directly. The circumstances in which Jazelle state execution is
entered are IMPLEMENTATION DEFINED. If Jazelle state execution is not entered, the instruction is executed
in the same way as a BX instruction to a SUBARCHITECTURE DEFINED register usage model. This is required
to ensure the Jazelle Extension hardware and the EJVM software communicate effectively with each other.
Similarly, various registers will contain SUBARCHITECTURE DEFINED values when Jazelle state execution is
terminated and ARM or Thumb state execution is resumed. The precise set of registers affected by these
requirements is a SUBARCHITECTURE DEFINED subset of the process registers, which are defined to be:

. the ARM general-purpose registers RO-R14

. the PC

. the CPSR

. the VFP general-purpose registers SO-S31 and D0-D15, subject to the VFP architecture’s restrictions
on their use and subject to the VFP architecture being present

. the FPSCR, subject to the VFP architecture being present.

All processor state that can be modified by Jazelle state execution must be kept in process registers, in order
to ensure that it is preserved and restored correctly when processor exceptions and process swaps occur.
Configuration state (that is, state that affects Jazelle state execution but is not modified by it) can be kept
either in process registers or in configuration registers.

EJVM implementations should only set JE == 1 after determining that the processor’s Jazelle Extension
subarchitecture is compatible with their usage of the process registers. Otherwise, they should leave JE ==
0 and execute without hardware acceleration.

Executing BXJ with Jazelle Extension disabled

If a BXJ instruction is executed when the JE bit is 0, it is executed identically to a BX instruction with the same
register operand.

BXJ instructions can therefore be freely executed when the JE bit is 0. In particular, if an EJVM determines
that it is executing on a processor whose Jazelle Extension implementation is trivial or uses an incompatible
subarchitecture, it can set JE == 0 and execute correctly, without the benefit of any Jazelle hardware
acceleration that may be present.

A2-56

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

Jazelle state exit

The processor exits Jazelle state in IMPLEMENTATION DEFINED circumstances. This is typically due to
attempted execution of an opcode that the implementation cannot handle in hardware, or that generates a
Jazelle exception (such as a Null-Pointer exception). When this occurs, various processor registers will
contain SUBARCHITECTURE DEFINED values, allowing the EJTVM to resume software execution of the opcode
program correctly.

The processor also exits Jazelle state when a processor exception occurs. The CPSR is copied to the
exception mode’s banked SPSR as normal, so the banked SPSR contains J == 1 and T == 0, and Jazelle state
is restored on return from the exception when the SPSR is copied back into the CPSR. Coupled with the
restriction that only process registers can be modified by Jazelle state execution, this ensures that all
registers are correctly preserved and restored by processor exception handlers. Configuration and control
registers may be modified in the exception handler itself as described in Configuration and control on
page A2-62.

Considerations specific to execution of opcodes apply to processor exceptions. For details of these, see
Jazelle Extension exception handling on page A2-58.

It is IMPLEMENTATION DEFINED whether Jazelle Extension hardware contains state that is modified during
Jazelle state execution, and is held outside the process registers during Jazelle state execution. If such state
exists, the implementation shall:

. Initialize the state from one or more of the process registers whenever Jazelle state is entered, either
as a result of execution of a BXJ instruction or of returning from a processor exception.

. Write the state into one or more of the process registers whenever Jazelle state is exited, either as a
result of taking a processor exception or of IMPLEMENTATION DEFINED circumstances.

. Ensure that the ways in which it is written into process registers on taking a processor exception, and
initialized from process registers on returning from that exception, result in it being correctly
preserved and restored over the exception.

Additional Jazelle state restrictions

The Jazelle Extension hardware shall obey the following restrictions:

. It must not change processor mode other than by taking one of the standard ARM processor
exceptions.
. It must not access banked versions of registers other than the ones belonging to the processor mode

in which it is entered.

. It must not do anything that is illegal for an UNPREDICTABLE instruction. That is, it must not generate
a security loophole, nor halt or hang the processor or any other part of the system.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-57

Programmers’ Model

A2.10.4

As aresult of these requirements, Jazelle state can be entered from User mode without risking a breach of
OS security. In addition:

. Entering Jazelle state from FIQ mode has UNPREDICTABLE results.

. Jazelle Extension subarchitectures and implementations must not make use of otherwise-unallocated
CPSR and SPSR bits. All such bits are reserved for future expansion of the ARM and Thumb
architectures.

Jazelle Extension exception handling

All exceptions copy the J bit from the CPSR to the SPSR, and all instructions that have the side-effect of
copying the SPSR to the CPSR must copy the J bit along with all the other bits.

When an exception occurs in Jazelle state, the R14 register for the exception mode is calculated as follows:
IRQ/FIQ Address of opcode to be executed on return from interrupt + 4.

Prefetch Abort Address of the opcode causing the abort + 4.

Data Abort Address of the opcode causing the abort + 8.

Undefined instruction

Must not occur. See Undefined Instruction exceptions on page A2-60.

SWI Must not occur. See SWI exceptions on page A2-60.

Interrupts (IRQ and FIQ)

In order for the standard mechanism for handling interrupts to work correctly, Jazelle Exception hardware
implementations must take care that whenever an interrupt is allowed to occur during Jazelle state execution,
one of the following occurs:

. Execution has reached an opcode instruction boundary. That is, all operations required to implement
one opcode have completed, and none of the operations required to implement the next opcode have
completed. The R14 value on entry to the interrupt handler must be the address of the next opcode,
plus 4.

. The sequence of operations performed from the start of the current opcode’s execution up to any point
where an interrupt can occur is idempotent: that is, it can be repeated from its start without changing
the overall result of executing the opcode. The R14 value on entry to the interrupt handler must be
the address of the current opcode, plus 4.

. If an interrupt does occur during an opcode’s execution, corrective action is taken either directly by
the Jazelle Extension hardware or indirectly by it calling a SUBARCHITECTURE DEFINED handler in the
EJVM, and that corrective action re-creates a situation in which the opcode can be re-executed from
its start. The R14 value on entry to the interrupt handler must be the address of the opcode, plus 4.

A2-58

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

Data aborts

The value saved in R14_abt on a data abort shall ensure that a virtual memory data abort handler can read
the system coprocessor (CP15) Fault Status and Fault Address registers, fix the reason for the abort and
return using SUBS PC,R14,#8 or its equivalent, without looking at the instruction that caused the abort or
which state it was executed in.

Note

This assumes that the intention is to return to and retry the opcode that caused the data abort. If the intention
is instead to return to the opcode after the one that caused the abort, then the return address will need to be
modified by the length of the opcode that caused the abort.

In order for the standard mechanism for handling data aborts to work correctly, Jazelle Exception hardware
implementations must ensure that one of the following applies where an opcode might generate a data abort:

. The sequence of operations performed from the start of the opcode’s execution up to the point where
the data abort occurs is idempotent. That is, it can be repeated from its start without changing the
overall result of executing the opcode.

. If the data abort occurs during opcode execution, corrective action is taken either directly by the
Jazelle Extension hardware or indirectly by it calling a SUBARCHITECTURE DEFINED handler in the
EJVM, and that corrective action re-creates a situation in which the opcode can be re-executed from
its start.

Note

In ARMV6, the Base Updated Abort Model is no longer allowed (see Abort models on page A2-23). This
removes one potential obstacle to the first of these solutions.

Prefetch aborts

The value saved in R14_abt on a prefetch abort shall ensure that a virtual memory prefetch abort handler
can locate the start of the instruction that caused the abort simply and without looking at the state in which
its execution was attempted. It is always at address (R14_abt — 4).

However, a multi-byte opcode may cross a page boundary, in which case the ARM processor’s prefetch
abort handler cannot determine directly which of the two pages caused the abort. It is SUBARCHITECTURE
DEFINED how this situation is handled, subject to the requirement that if it is handled by calling the ARM
processor’s prefetch abort handler, (R14_abt — 4) must point to the first byte of the opcode concerned.

In order to ensure subarchitecture-independence, OS designers should write prefetch abort handlers in such
a way that they can handle a prefetch abort generated in either of the two pages spanned by such a opcode.
A suggested simple technique is:

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-59

Programmers’ Model

IF the page pointed to by (Rl14_abt - 4) is not mapped

THEN map the page

ELSE map the page following the page including (R14_abt - 4)
ENDIF
retry the instruction

SWI exceptions
SWI exceptions must not occur during Jazelle state execution, for the following reasons:

. ARM and Thumb state SW1Is are supported in the ARM architecture. Opcode SWIs are not
supported, due to the additional complexity they would introduce in the SWI usage model.

. Jazelle Extension subarchitectures and implementations need to have a mechanism to return to ARM
or Thumb state handlers in order to execute the more complex opcode. If a opcode needs to make an
OS call, it can make use of this mechanism to cause an ARM or Thumb SWI instruction to be executed,
with a small overhead in percentage terms compared with the cost of the OS call itself.

. SWI calling conventions are highly OS-dependent, and would potentially require the subarchitecture
to be OS aware.

Undefined Instruction exceptions
Undefined Instruction exceptions must not occur during Jazelle state execution.

When the Jazelle Extension hardware synthesizes a coprocessor instruction and passes it to a hardware
coprocessor (most likely, a VFP coprocessor), and the coprocessor rejects the instruction, there are
considerable complications involved if this was allowed to result in the ARM processor’s Undefined
Instruction trap. These include:

. The coprocessor instruction is not available to be loaded from memory (something that is relied upon
by most Undefined Instruction handlers).

. The coprocessor instruction cannot typically be determined from the opcode that is loadable from
memory without considerable knowledge of implementation and subarchitecture details of the
Jazelle Extension hardware.

. The coprocessor-generated Undefined Instruction exceptions (and VFP-generated ones in particular)
can typically be either precise (that is, caused by the instruction at (R14_und —4)) or imprecise (that
is, caused by a pending exceptional condition generated by some earlier instruction and nothing to do
with the instruction at (R14_und — 4)).

Precise Undefined Instruction exceptions typically must be handled by emulating the instruction at
(R14_und - 4), followed by returning to the instruction that follows it. Imprecise Undefined
Instruction exceptions typically need to be handled by getting details of the exceptional condition
and/or the earlier instruction from the coprocessor, fixing things up in some way, and then returning
to the instruction at (R14_und — 4).

This means that there are two different possible return addresses, not necessarily at a fixed offset from
each other as they are when dealing with coprocessor instructions in memory, making it difficult to
define the value R14_und should have on entry to the Undefined Instruction handler.

A2-60 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

. The return address for the Undefined Instruction handler places idempotency requirements and/or
completion requirements (that is, that once the coprocessor operation has been completed, everything
necessary for execution of the opcode has been done) on the sequences of operations performed by
the Jazelle Extension hardware.

The restrictions require cooperation and limit the design freedom for both the Jazelle acceleration and
coprocessor designers.

To avoid the need for undefined exceptions, the following coprocessor interworking model for Jazelle
Extension hardware applies.

Coprocessor Interworking

If while executing in Jazelle state, the Jazelle Extension hardware synthesizes a coprocessor instruction and
passes it to a hardware coprocessor for execution, then it must be prepared for the coprocessor to reject the
instruction. If a coprocessor rejects an instruction issued by Jazelle Extension hardware, the Jazelle
Extension hardware and coprocessor must cooperate to:

. Prevent the Undefined Instruction exception that would occur if the coprocessor had rejected a
coprocessor instruction in ARM state from occurring.

. Take suitable SUBARCHITECTURE DEFINED corrective action, probably involving exiting Jazelle state,
and executing a suitable ARM code handler that contains further coprocessor instructions.

To ensure that this is a practical technique and does not result in inadequate or excessive handling of
coprocessor instruction rejections, coprocessors designed for use with the Jazelle Extension must:

. When there is an exceptional condition generated by an earlier instruction, the coprocessor shall keep
track of that exceptional condition and keep trying to cause an imprecise Undefined Instruction
exception whenever an attempt is made to execute one of its coprocessor instructions until the
exceptional condition is cleared by its Undefined Instruction handler.

. When it tries to cause a precise Undefined Instruction exception, for reasons to do with the
coprocessor instruction it is currently being asked to execute, the coprocessor shall act in a
memoryless way. That is, if it is subsequently asked to execute a different coprocessor instruction, it
must ignore the instruction it first tried to reject precisely and instead determine whether the new
instruction needs to be rejected precisely.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-61

Programmers’ Model

A2.10.5 Configuration and control

All registers associated with the Jazelle Extension are implemented in coprocessor space as part of
coprocessor fourteen (CP14). The registers are accessed using the MCR (MCR on page A4-62) and MRC (MRC
on page A4-70) instructions.

The general instruction formats for Jazelle Extension control and configuration are as follows:

MCR{<cond>} pl4, 7, <Rd>, CRn, CRm{, opcode_2}=
MRC{<cond>} pl4, 7, <Rd>, CRn, CRm{, opcode_2}=

*opcode_2 can be omitted if opcode_2 ==
The following rules apply to the Jazelle Extension control and configuration registers:

. All SUBARCHITECTURE DEFINED configuration registers are accessed by coprocessor 14 MRC and MCR
instructions with <opcode_1> set to 7.

. The values contained by configuration registers are only changed by the execution of MCR instructions,
and in particular are not changed by Jazelle state execution of opcodes.

. The access policy for the required registers is fully defined in their descriptions. All MCR accesses to
the Jazelle ID register, and MRC or MCR accesses which are restricted to privileged modes only are
UNDEFINED if executed in User mode.

The access policy of other configuration registers is SUBARCHITECTURE DEFINED.

. When a configuration register is readable, the result of reading it will be the last value written to it,
with no side-effects. When a configuration register is not readable, the result of attempting to read it
is UNPREDICTABLE.

. When a configuration register can be written, the effect must be idempotent. That is, the overall effect
of writing the value more than once must not differ from the effect of writing it once.

A minimum of three registers are required in a non-trivial implementation. Additional registers may be
provided and are SUBARCHITECTURE DEFINED.

Jazelle ID register

The Jazelle Identity register allows EJVMs to determine the architecture and subarchitecture under which
they are running. This is a coprocessor 14 read-only register, accessed by the MRC instruction:

MRC{<cond>} pl4, 7, <Rd>, c@, c@ {, 0} ;<Rd>:= Jazelle Identity register

The Jazelle ID register is normally accessible from both privileged and User modes. See Operating System
(OS) control register on page A2-64 for User mode access restrictions.

A2-62 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

The format of the Jazelle Identity register is:

31 28 27 20 19 12 11 0

Architecture Implementor Subarchitecture SUBARCHITECTURE DEFINED

Bits[31:28] Contain an architecture code. This uses the same architecture code that appears in the Main
ID register in coprocessor 15

Bits[27:20] Contain the implementor code of the designer of the subarchitecture. This uses the same
implementor code that appears in the Main ID register in coprocessor 15, as documented in
Main ID register on page B3-7.

As a special case, if the trivial implementation of the Jazelle Extension is used, this
implementor code is 0x00.

Bits[19:12] Contain the subarchitecture code. The following subarchitecture code is defined:

0x00 = Jazelle V1 subarchitecture, or trivial implementation of Jazelle Extension if
implementor code is 0x00.

Bits[11:0] Contain further SUBARCHITECTURE DEFINED information.

Main configuration register

A Main Configuration register is added to control the Jazelle Extension. This is a coprocessor 14 register,
accessed by MRC and MCR instructions as follows:

MRC{<cond>} pl4, 7, <Rd>, c2, c@ {, 0} ; <Rd> := Main Configuration
; register
MCR{<cond>} pl4, 7, <Rd>, c2, c0 {, 0} ; Main Configuration

register := <Rd>

This register is normally write-only from User mode. See Operating System (OS) control register on
page A2-64 for additional User mode access restrictions.

The format of the Main Configuration register is:

31 10
SUBARCHITECTURE DEFINED JE

Bit[31:1] SUBARCHITECTURE DEFINED information.

Bit[0] The Jazelle Enable (JE) bit, which is cleared to O on reset.

‘When the JE bit is 0, the Jazelle Extension is disabled and the BX] instruction does not cause
Jazelle state execution — instead, BXJ behaves exactly as a BX instruction. See BXJ on
page A4-21.

When the JE bit is 1, the Jazelle Extension is enabled.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-63

Programmers’ Model

Operating System (OS) control register

The Jazelle OS Control register provides the operating system with process usage control of the Jazelle
Extension. This is a coprocessor 14 register, accessed by MRC and MCR instructions as follows:

MRC{<cond>} pl4, 7, <Rd>, c1, c@ {, 0} ; <Rd> := Jazelle 0S
; Control register
MCR{<cond>} pl4, 7, <Rd>, c1, c0 {, 0} ; Jazelle 0S Control

; register := <Rd>

This register can only be accessed from privileged modes; these instructions are UNDEFINED when executed
in User mode. EJVMs will normally never access the Jazelle OS Control register, and EJVMs that are
intended to run in User mode cannot do so.

The purpose of the Jazelle OS Control register is primarily to allow operating systems to control access to
the Jazelle Extension hardware in a subarchitecture-independent fashion. It is expected to be used in
conjunction with the JE bit of the Main Configuration register.

The format of the Jazelle OS Control register is:

31 2 1 0
c|C

RESERVED (RAZ) vID
Bits[31:2] Reserved for future expansion. Prior to such expansion, they must read as zero. To maximize

future compatibility, software should preserve their contents, using a read modify write
method to update the other control bits.

CV Bit[1] The Configuration Valid bit, which can be used by an operating system to signal to an EJVM
that it needs to re-write its configuration to the configuration registers. When CV == 0,
re-writing of the configuration registers is required before an opcode is next executed. When
CV == 1, no re-writing of the configuration registers is required, other than re-writing that
is certain to occur before an opcode is next executed.

CD Bit[0] The Configuration Disabled bit, which can be used by an operating system to monitor and/or
control User mode access to the configuration registers and the Jazelle Identity register.
When CD == 0, MCR instructions that write to configuration registers and MRC instructions that
read the Jazelle Identity register execute normally. When CD == 1, all of these instructions
only behave normally when executed in a privileged mode, and are UNDEFINED when
executed in User mode.

When the JE bit of the Main Configuration register is 0, the Jazelle OS Control register has no effect on how
BXJ instructions are executed. They always execute as a BX instruction.

When the JE bit of the Main Configuration register is 1, the CV bit affects BXJ instructions as follows:

o If CV == 1, the Jazelle Extension hardware configuration is considered enabled and valid, allowing
the processor to enter Jazelle state and execute opcodes as described in Executing BXJ with Jazelle
Extension enabled on page A2-56.

A2-64

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

. If CV ==0, then in all of the IMPLEMENTATION DEFINED circumstances in which the Jazelle Extension
hardware would have entered Jazelle state if CV had been 1, it instead enters a configuration invalid
handler and sets CV to 1. A configuration invalid handler is a sequence of ARM instructions that
includes MCR instructions to write the configuration required by the EJVM, ending with a BXJ
instruction to re-attempt execution of the opcode concerned. The method by which the configuration
invalid handler’s address is determined and its entry and exit conditions are all SUBARCHITECTURE
DEFINED.

In circumstances in which the Jazelle Extension hardware would not have entered Jazelle state if CV
had been 1, it is IMPLEMENTATION DEFINED whether the configuration invalid handler is entered as
described in the last paragraph, or the BXJ instruction is treated as a BX instruction with possible
SUBARCHITECTURE DEFINED restrictions.

The intended use of the CV bit is that when a process swap occurs, the operating system sets CV to 0. The
result is that before the new process can execute an opcode in the Jazelle Extension hardware, it must
execute its configuration invalid handler. This ensures that the Jazelle Extension hardware’s configuration
registers are correctly for the ETVM concerned. The CV bit is set to 1 on entry to the configuration invalid
handler, allowing the opcode to be executed in hardware when the invalid configuration handler re-attempts
its execution.

Note

It may seem counterintuitive that the CV bit is set to 1 on entry to the configuration invalid handler, rather
than after it has completed writing the configuration registers. This is correct, otherwise, the configuration
invalid handler may partially configure the hardware before a process swap occurs, causing another
EJVM-using process to write its configuration to the hardware.

When the original process is resumed, CV will have been cleared (CV == 0) by the operating system. If the
handler writes its configuration to the hardware and then sets CV to 1 in this example, the opcode will be
executed with the hardware configured for a hybrid of the two configurations.

By setting CV to 1 on entry to the configuration invalid handler, this means that CV is 0 when execution of
the opcode is re-attempted, and the configuration invalid handler will execute again (and if necessary,
recursively) until it finally completes execution without a process swap occurring.

The CD bit has multiple possible uses for monitoring and controlling User mode access to the Jazelle
Extension hardware. Among them are:

. By setting CD == 1 and JE == 0, an OS can prevent all User mode access to the Jazelle Extension
hardware: any attempt to use the BXJ instruction will produce the same result as a BX instruction, and
any attempt to configure the hardware (including setting the JE bit) will result in an Undefined
Instruction exception.

. To provide User mode access to the Jazelle Extension hardware in a simple manner, while protecting
EJVMs from conflicting use of the hardware by other processes, the OS should set CD == 0 and
should preserve and restore the Main Configuration register on process swaps, initializing its value
to 0 for new processes. In addition, it should set the CV bit to 0 on every process swap, to ensure that
EJVMs reconfigure the Jazelle Extension hardware to match their requirements when necessary.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-65

Programmers’ Model

. The technique described in the previous bullet point may result in large numbers of unnecessary
reconfigurations of the Jazelle Extension hardware if only a few processes are using the hardware.
This can be improved by the OS keeping track of which User mode processes are known to be using
an EJVM.

The OS should set CD == 1 and JE == 0 for any new processes or on a context switch to an existing
process that is not using an EJVM. Any User mode instruction that attempts to access a configuration
register will take an UNDEFINED exception. The Undefined Instruction handler can then identify the
EJVM need, mark the process as using an EJVM, then return to retry the instruction with CD == 0.

A further refinement is to clear the CV bit to O only if the context switch is to an EJVM-using process
that is different from the last EVJM-using process which ran. This avoids redundant reconfiguration
of the hardware. That is, the operating system maintains a “process currently owning the Jazelle
Extension hardware” variable, that gets updated with a process_ID when swapping to an
EJVM-using process. The context switch software sets CV to 0 if the process_ID update results in a
change to the saved variable.

Context switch software implementing the CV-bit scheme should also save and restore the Main
Configuration register (in its entirety) on a process swap where the EJVM-using process changes.
This ensures that the restored EJVM can use the JE bit reliably for its own purpose.

Note

This technique will not identify privileged EJVM-using processes. However, it is assumed that
operating systems are aware of the needs of their privileged processes.

. The OS can impose a single Jazelle Extension configuration on all User mode code by writing that
configuration to the hardware, then setting CD == 1 and JE == 1.

The CV and CD bits are both set to 0 on reset. This ensures that subject to some conditions, an EJVM can
operate correctly under an OS that does not support the Jazelle Extension. The main such condition is that
a process swap never swaps between two EJVM-using processes that require different settings of the
configuration registers. This would occur in either of the following two cases, for example:

. if there is only ever one EJVM-using process in the system.
. if all of the EJVM-using processes in the system use the same static settings of the configuration
registers.

A2-66 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

A2.10.6 EJVM operation

This section summarizes how EJVMs should operate in order to meet the architecture requirements.

Initialization

During initialization, the EJVM should first check which subarchitecture is present, using the implementor
and subarchitecture codes in the value read from the Jazelle Identity register.

If the EJVM is incompatible with the subarchitecture, it should either write a value with JE == 0 to the Main
Configuration register, or (if unaccelerated opcode execution is unacceptable) generate an error.

If the EJVM is compatible with the subarchitecture, it should write its desired configuration to the Main
Configuration register and any other configuration registers. The EJVM should not skip this step on the
assumption that the CV bit of the Jazelle OS Control register will be 0; an assumption that CV ==
triggering the configuration invalid handler before any opcode is executed by the Jazelle Extension hardware
should not be relied on.

Opcode execution

The EJVM should contain a handler for each opcode and for each exception condition specified by the
subarchitecture it is designed for (the exception conditions always include configuration invalid). It should
initiate opcode execution by executing a BXJ instruction with the register operand specifying the target
address of the opcode handler for the first opcode of the program, and the process registers set up in
accordance with the SUBARCHITECTURE DEFINED register usage model.

The opcode handler performs the data-processing operations required by the opcode concerned, determines
the address of the next opcode to be executed, determines the address of the handler for that opcode, and
performs a BXJ to that handler address with the registers again set up to the SUBARCHITECTURE DEFINED
register usage model.

The register usage model on entry to exception condition handlers are SUBARCHITECTURE DEFINED, and may
differ from the register usage model defined for BXJ instruction execution. The handlers then resolve the
exception condition. For example, in the case of the configuration invalid handler, the handler rewrites the
desired configuration to the Main Configuration register and any other configuration registers).

Further considerations

To ensure application execution and correct interaction with an operating system, EJVMs should only
perform operations that are allowed in User mode. In particular, they should only ever read the Jazelle ID
register, write to the configuration registers, and should not attempt to access the Jazelle OS Control register.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-67

Programmers’ Model

A2.10.7 Trivial implementations

This section summarizes what needs to be implemented in trivial implementations of the Jazelle Extension.

Implement the Jazelle Identity register with the implementor and subarchitecture fields set to zero;
the whole register may RAZ (read as zero).

Implement the Main Configuration register to read as zero and ignore writes.

Implement the Jazelle OS control register such that it can be read and written, but its effects are
ignored. The register may be implemented as RAZ/DNM - read as zero, do not modify on writes. This
allows operating systems supporting an EJVM to execute correctly.

Implement the BXJ instruction to behave identically to the BX instruction in all circumstances, as
implied by the fact that the JE bit is always zero. In particular, this means that Jazelle state will never
be entered normally on a trivial implementation.

In ARMV®6, a trivial implementation can implement the J bit in the CPSR/SPSRs as RAZ/DNM; read
as zero, do not modify on writes. This is allowed because there is no legitimate way to set the J bit
and enter Jazelle state, hence any return routine that tries to do so is issuing an UNPREDICTABLE
instruction.

Otherwise, implement J bits in the CPSR and each SPSR, and ensure that they are read, written and
copied correctly when exceptions are entered and when MSR, MRS and exception return instructions are
executed.

In all cases when J == 1 in the CPSR it is IMPLEMENTATION DEFINED whether the next instruction is
fetched and, could result in a prefetch abort, or it is assumed to be UNDEFINED.

Note

The PC does not need to be extended to 32 bits in the trivial implementation, since the only way that bit[0]
of the PC is visible in ARM or Thumb state is as a result of a processor exception occurring during Jazelle
state execution, and Jazelle state execution does not occur on a trivial implementation.

A2-68

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A2.11

A2.111

Programmers’ Model

Saturated integer arithmetic

When viewed as a signed number, the value of a general-purpose register lies in the range from -231 (or
0x80000000) to +231 —1 (or 0x7FFFFFFF). If an addition or subtraction is performed on such numbers
and the correct mathematical result lies outside this range, it would require more than 32 bits to represent.
In these circumstances, the surplus bits are normally discarded, which has the effect that the result obtained
is equal to the correct mathematical result reduced modulo 232.

For example, 0x60000000 could be used to represent +3 x 229 as a signed integer. If you add this number
to itself, you get +3 x 230, which lies outside the representable range, but could be represented as the 33-bit
signed number 0x0C0000000. The actual result obtained will be the right-most 32 bits of this, which are
0xC0000000. This represents 230, which is smaller than the correct mathematical result by 232, and does
not even have the same sign as the correct result.

This kind of inaccuracy is unacceptable in many DSP applications. For example, if it occurred while
processing an audio signal, the abrupt change of sign would be likely to result in a loud click. To avoid this
sort of effect, many DSP algorithms use saturated signed arithmetic. This modifies the way normal integer
arithmetic behaves as follows:

. If the correct mathematical result lies within the available range from —23! to +231 — 1, the result of
the operation is equal to the correct mathematical result.

. If the correct mathematical result is greater than +23! — 1 and so overflows the upper end of the
representable range, the result of the operation is equal to +23! — 1.

. If the correct mathematical result is less than —231 and so overflows the lower end of the representable
range, the result of the operation is equal to —231.

Put another way, the result of a saturated arithmetic operation is the closest representable number to the
correct mathematical result of the operation.

Instructions that support saturated signed 32-bit integer additions and subtractions (Q prefix), use the QADD
and QSUB instructions. Variants of these instructions (QDADD and QDSUB) perform a saturated doubling of
one of the operands before the saturated addition or subtraction.

Saturated integer multiplications are not supported, because the product of two values of widths A and B
bits never overflows an (A+B)-bit destination.

Saturated Q15 and Q31 arithmetic

A 32-bit signed value can be treated as having a binary point immediately after its sign bit. This is equivalent
to dividing its signed integer value by 231, so that it can now represent numbers from —1 to +1 — 2-31, When
a 32-bit value is used to represent a fractional number in this fashion, it is known as a Q31 number.

Saturated additions, subtractions, and doublings can be performed on Q31 numbers using the same
instructions as are used for saturated integer arithmetic, since everything is simply scaled down by a factor
of 2-31,

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-69

Programmers’ Model

Similarly, a 16-bit value can be treated as having a binary point immediately after its sign bit, which
effectively divides its signed integer value by 215. When a 16-bit value is used in this fashion, it can represent
numbers from —1 to +1 — 2-15 and is known as a Q15 number.

If two Q15 numbers are multiplied together as integers, the resulting integer needs to be scaled down by a
factor of 2-15 x 2-15 == 2-30, For example, multiplying the Q15 number 0x8000 (representing —1) by itself
using an integer multiplication instruction yields the value 040000000, which is 230 times the desired
result of +1.

This means that the result of the integer multiplication instruction is not quite in Q31 form. To get it into
Q31 form, it must be doubled, so that the required scaling factor becomes 2-31. Furthermore, it is possible
that the doubling will cause integer overflow, so the result should in fact be doubled with saturation. In
particular, the result 0x40000000 from the multiplication of 0x8000 by itself should be doubled with
saturation to produce 0x7FFFFFFF (the closest possible Q31 number to the correct mathematical result of
—1 x -1 ==+1). If it were doubled without saturation, it would instead produce 0x80000000, which is the
Q31 representation of —1.

To implement a saturated Q15 x Q15 — Q31 multiplication, therefore, an integer multiply instruction
should be followed by a saturated integer doubling. The latter can be performed by a QADD instruction
adding the multiply result to itself.

Similarly, a saturated Q15 x Q15 + Q31 — Q31 multiply-accumulate can be performed using an integer
multiply instruction followed by the use of a QDADD instruction.

Some other examples of arithmetic on Q15 and Q31 numbers are described in the Usage sections for the
individual instructions.

A2-70

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Chapter A3
The ARM Instruction Set

This chapter describes the ARM® instruction set and contains the following sections:

.

Instruction set encoding on page A3-2

The condition field on page A3-3

Branch instructions on page A3-5

Data-processing instructions on page A3-7

Multiply instructions on page A3-10

Parallel addition and subtraction instructions on page A3-14
Extend instructions on page A3-16

Miscellaneous arithmetic instructions on page A3-17
Other miscellaneous instructions on page A3-18
Status register access instructions on page A3-19
Load and store instructions on page A3-21

Load and Store Multiple instructions on page A3-26
Semaphore instructions on page A3-28
Exception-generating instructions on page A3-29
Coprocessor instructions on page A3-30

Extending the instruction set on page A3-32.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

A3-1

The ARM Instruction Set

A3.1 Instruction set encoding
Figure A3-1 shows the ARM instruction set encoding.

All other bit patterns are UNPREDICTABLE or UNDEFINED. See Extending the instruction set on page A3-32
for a description of the cases where instructions are UNDEFINED.

An entry in square brackets, for example [1], indicates that more information is given after the figure.

31302928272625242322212019 1817161514 13121110 9 8 7 6 5 4 3 2 1 0

shift | 0 Rm

Data processing immediate shift cond[1] |0 O O| opcode |S Rn Rd ‘ shift amount

Mlscellaneglé?'r_lisgt[]urgl:&)gj cond[1] [0 0 0|1 O x x[0O[x X X X X X X X X X X X X X x|0|X X X X

o

Data processing register shift [2] cond[1] [0 O opcode |S Rn ‘ Rd ‘ Rs 0| shift | 1 Rm

Miscellaneous instructions:
See Figure A3-4

Multiplies: See Figure A3-3
Extra load/stores: See Figure A3-5

cond[1] [0 0 0|1 0 x x|0|x x x X x X X X X X X x[0|x x|1|x X X X

cond[1] [0 0 O|x X x Xx X X X X X X X X X X X X x[1[x x|1]X X X X

Data processing immediate [2] cond[1] [0 O 1| opcode ‘S Rn ‘ Rd ‘ rotate immediate

Undefined instruction cond[1] [0 0 11 O|x|{0 Olx X X X X X X X X X X X X X X X X X X X

Move immediate to status register cond[1] |0 O 1|1 O/R|1 O Mask SBO rotate ‘ immediate
Load/store immediate offset cond[1] |0 1 O|P|U|B|W|L Rn Rd immediate
Load/store register offset cond[1] [0 1 1|P|U|B|W|L Rn Rd shift amount | shift | 0 Rm

Medlaslgzt{:l}'gcﬂ?gig]é cond[1] [0 1 1[X X X X X X X X X X X X X X X X X X X x|[1[x x x x

1711 1|x x x x

Architecturally undefined cond[1] |0 1 1{1 1 1 1 1]Xx X X X X X X X X X X X

Load/store multiple | cond[1] |1 0 O|P|U ‘ S ‘W‘ L Rn ‘ register list
Branch and branch with link cond[1] |1 0 1|L 24-bit offset
Coprocessor load/store and double .
register transfers | cond[3] |1 1 0|P|U|N|W|L Rn CRd cp_num 8-bit offset
Coprocessor data processing cond[3] |1 1 1 0O opcodel CRn CRd cp_num |opcode2| 0 CRm
Coprocessor register transfers cond[3] [1 1 1 0 |opcodel|L CRn Rd cp_num |opcode2 | 1 CRm
Software interrupt cond[1] [1 1 1 1 swi humber

Unconditional instructions: |1 1 1 1{Xx X
See Figure A3-6

Figure A3-1 ARM instruction set summary

1. The cond field is not allowed to be 1111 in this line. Other lines deal with the cases where bits[31:28]
of the instruction are 1111.

2. If the opcode field is of the form 10xx and the S field is 0, one of the following lines applies instead.
3. If the cond field is 1111, this instruction is UNPREDICTABLE prior to ARMvS5.
The architecturally Undefined instruction uses a small number of these instruction encodings.

A3-2 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A3.2

The ARM Instruction Set

The condition field

Most ARM instructions can be conditionally executed, which means that they only have their normal effect
on the programmers’ model state, memory and coprocessors if the N, Z, C and V flags in the CPSR satisfy
a condition specified in the instruction. If the flags do not satisfy this condition, the instruction acts as a
NOP: that is, execution advances to the next instruction as normal, including any relevant checks for
interrupts and Prefetch Aborts, but has no other effect.

Prior to ARMvS, all ARM instructions could be conditionally executed. A few instructions have been
introduced subsequently which can only be executed unconditionally. See Unconditional instruction
extension space on page A3-41 for details.

Every instruction contains a 4-bit condition code field in bits 31 to 28:

31 28 27 0

cond

This field contains one of the 16 values described in Table A3-1 on page A3-4. Most instruction mnemonics
can be extended with the letters defined in the mnemonic extension field.

If the always (AL) condition is specified, the instruction is executed irrespective of the value of the condition
code flags. The absence of a condition code on an instruction mnemonic implies the AL condition code.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A3-3

The ARM Instruction Set

A3.2.1 Condition code Ob1111

If the condition field is Ob1111, the behavior depends on the architecture version:

. In ARMv4, any instruction with a condition field of Ob1111 is UNPREDICTABLE.

. In ARMVS5 and above, a condition field of Ob1111 is used to encode various additional instructions
which can only be executed unconditionally (see Unconditional instruction extension space on
page A3-41). All instruction encoding diagrams which show bits[31:28] as cond only match
instructions in which these bits are not equal to Ob1111.

Table A3-1 Condition codes
;‘;fg&e znx'::nms?;‘:\c Meaning Condition flag state
0000 EQ Equal Z set
0001 NE Not equal Z clear
0010 CS/HS Carry set/unsigned higher or same C set
0011 CC/LO Carry clear/unsigned lower C clear
0100 MI Minus/negative N set
0101 PL Plus/positive or zero N clear
0110 VS Overflow V set
0111 vC No overflow V clear
1000 HI Unsigned higher C set and Z clear
1001 LS Unsigned lower or same C clear or Z set
1010 GE Signed greater than or equal N setand V set, or
N clear and V clear (N == V)
1